CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Iterative Graph Seeking for Object Tracking
Du, Dawei1,2; Wen, Longyin3; Qi, Honggang1,2; Huang, Qingming1,2,4; Tian, Qi5; Lyu, Siwei6
2018-04-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
卷号27期号:4页码:1809-1821
摘要To effectively solve the challenges in object tracking, such as large deformation and severe occlusion, many existing methods use graph-based models to capture target part relations, and adopt a sequential scheme of target part selection, part matching, and state estimation. However, such methods have two major drawbacks: 1) inaccurate part selection leads to performance deterioration of part matching and state estimation and 2) there are insufficient effective global constraints for local part selection and matching. In this paper, we propose a new object tracking method based on iterative graph seeking, which integrate target part selection, part matching, and state estimation using a unified energy minimization framework. Our method also incorporates structural information in local parts variations using the global constraint. We devise an alternative iteration scheme to minimize the energy function for searching the most plausible target geometric graph. Experimental results on several challenging benchmarks (i.e., VOT2015, OTB2013, and OTB2015) demonstrate improved performance and robustness in comparison with existing algorithms.
关键词Object tracking iterative graph seeking alternative iteration scheme energy minimization
DOI10.1109/TIP.2017.2785626
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61332016] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61650202] ; National Natural Science Foundation of China[61472388] ; National Natural Science Foundation of China[61771341] ; National Natural Science Foundation of China[61429201] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; ARO[W911NF-15-1-0290] ; Faculty Research Gift Awards through the NEC Laboratories of America and Blippar ; U.S. National Science Foundation National Robotics Initiative[IIS-1537023]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000429464100002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:19[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5763
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qi, Honggang; Huang, Qingming
作者单位1.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 101408, Peoples R China
3.GE Global Res, Niskayuna, NY 12309 USA
4.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
5.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
6.SUNY Albany, Dept Comp Sci, Albany, NY 12222 USA
推荐引用方式
GB/T 7714
Du, Dawei,Wen, Longyin,Qi, Honggang,et al. Iterative Graph Seeking for Object Tracking[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2018,27(4):1809-1821.
APA Du, Dawei,Wen, Longyin,Qi, Honggang,Huang, Qingming,Tian, Qi,&Lyu, Siwei.(2018).Iterative Graph Seeking for Object Tracking.IEEE TRANSACTIONS ON IMAGE PROCESSING,27(4),1809-1821.
MLA Du, Dawei,et al."Iterative Graph Seeking for Object Tracking".IEEE TRANSACTIONS ON IMAGE PROCESSING 27.4(2018):1809-1821.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Du, Dawei]的文章
[Wen, Longyin]的文章
[Qi, Honggang]的文章
百度学术
百度学术中相似的文章
[Du, Dawei]的文章
[Wen, Longyin]的文章
[Qi, Honggang]的文章
必应学术
必应学术中相似的文章
[Du, Dawei]的文章
[Wen, Longyin]的文章
[Qi, Honggang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。