CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LMDet: A "Naturalness" Statistical Method for Hardware Trojan Detection
Shen, Haihua1,2; Tan, Huazhe1,2; Li, Huawei3; Zhang, Feng4; Li, Xiaowei3
2018-04-01
发表期刊IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
ISSN1063-8210
卷号26期号:4页码:720-732
摘要Hardware Trojans (HTs) are emerging threats for integrated circuits. In this paper, we propose a novel scheme, named LMDet, to detect HTs through distinguishing the "unnaturalness" of HTs from the "naturalness" of normal circuits using the natural language processing technology. The key insight of LMDet is that we find clean circuits tend to be "natural" (i.e., to be highly repetitive in structure) and HTs appear to be "unnatural" (i.e., to be rare in structure) in some sense. LMDet models circuit gates sequentially, using the n-gram language model. Gate sequences from the circuit under detection (CUD) are assessed according to their probability in the model, and low-probability sequences are marked as suspected Trojan-related gates. Evaluation with benchmarks and industrial circuits shows that LMDet is capable of detecting Trojan logic without the HT-free reference of CUD. LMDet has short execution time on large commercial circuits with acceptable space overhead. It is a promising method in real industry since plenty of HT-free designs are available as training corpus to ensure good statistical effects.
关键词Hardware Trojan (HT) detection natural language processing (NLP) n-gram language model statistical analysis
DOI10.1109/TVLSI.2017.2781423
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61432017] ; National Natural Science Foundation of China[61474134] ; National Natural Science Foundation of China[61532017] ; National Key Research and Development Program of China[2016YFF0203500]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:000428615000011
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5752
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shen, Haihua; Li, Huawei
作者单位1.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
2.Beihang Univ, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Inst Microelect, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Shen, Haihua,Tan, Huazhe,Li, Huawei,et al. LMDet: A "Naturalness" Statistical Method for Hardware Trojan Detection[J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,2018,26(4):720-732.
APA Shen, Haihua,Tan, Huazhe,Li, Huawei,Zhang, Feng,&Li, Xiaowei.(2018).LMDet: A "Naturalness" Statistical Method for Hardware Trojan Detection.IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS,26(4),720-732.
MLA Shen, Haihua,et al."LMDet: A "Naturalness" Statistical Method for Hardware Trojan Detection".IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 26.4(2018):720-732.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen, Haihua]的文章
[Tan, Huazhe]的文章
[Li, Huawei]的文章
百度学术
百度学术中相似的文章
[Shen, Haihua]的文章
[Tan, Huazhe]的文章
[Li, Huawei]的文章
必应学术
必应学术中相似的文章
[Shen, Haihua]的文章
[Tan, Huazhe]的文章
[Li, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。