CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
RECOME: A new density-based clustering algorithm using relative KNN kernel density
Geng, Yangli-ao1; Li, Qingyong1; Zheng, Rong2; Zhuang, Fuzhen3,4; He, Ruisi5; Xiong, Naixue6
2018-04-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号436页码:13-30
摘要Discovering clusters from a dataset with different shapes, densities, and scales is a known challenging problem in data clustering. In this paper, we propose the RElative COre MErge (RECOME) clustering algorithm. The core of RECOME is a novel density measure, i.e., Relative K nearest Neighbor Kernel Density (RNKD). RECOME identifies core objects with unit RNKD, and partitions non-core objects into atom clusters by successively following higher density neighbor relations toward core objects. Core objects and their corresponding atom clusters are then merged through alpha-reachable paths on a KNN graph. We discover that the number of clusters computed by RECOME is a step function of the a parameter with jump discontinuity on a small collection of values. A fast jump discontinuity discovery (FJDD) method is proposed based on graph theory. RECOME is evaluated on both synthetic datasets and real datasets. Experimental results indicate that RECOME is able to discover clusters with different shapes, densities, and scales. It outperforms six baseline methods on both synthetic datasets and real datasets. Moreover, FJDD is shown to be effective to extract the jump discontinuity set of parameter a for all tested datasets, which can ease the task of data exploration and parameter tuning. (C) 2018 Elsevier Inc. All rights reserved.
关键词Density-based clustering Density estimation K nearest neighbors Graph theory
DOI10.1016/j.ins.2018.01.013
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61725101] ; National Natural Science Foundation of China[61773361] ; National Natural Science Foundation of China[61771037] ; Beijing Natural Science Foundation[J160004] ; Shanghai Research Program[17511102900] ; National Science and Engineering Council, Canada
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000427311400002
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:54[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5708
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Qingyong
作者单位1.Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
2.McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada
3.Chinese Acad Sci, Key Lab Intelligen Informat Proc, ICT, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing, Peoples R China
6.Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK USA
推荐引用方式
GB/T 7714
Geng, Yangli-ao,Li, Qingyong,Zheng, Rong,et al. RECOME: A new density-based clustering algorithm using relative KNN kernel density[J]. INFORMATION SCIENCES,2018,436:13-30.
APA Geng, Yangli-ao,Li, Qingyong,Zheng, Rong,Zhuang, Fuzhen,He, Ruisi,&Xiong, Naixue.(2018).RECOME: A new density-based clustering algorithm using relative KNN kernel density.INFORMATION SCIENCES,436,13-30.
MLA Geng, Yangli-ao,et al."RECOME: A new density-based clustering algorithm using relative KNN kernel density".INFORMATION SCIENCES 436(2018):13-30.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Geng, Yangli-ao]的文章
[Li, Qingyong]的文章
[Zheng, Rong]的文章
百度学术
百度学术中相似的文章
[Geng, Yangli-ao]的文章
[Li, Qingyong]的文章
[Zheng, Rong]的文章
必应学术
必应学术中相似的文章
[Geng, Yangli-ao]的文章
[Li, Qingyong]的文章
[Zheng, Rong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。