CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Construction of ground-state preserving sparse lattice models for predictive materials simulations
Huang, Wenxuan1; Urban, Alexander2; Rong, Ziqin1; Ding, Zhiwei1; Luo, Chuan3; Ceder, Gerbrand1,2,4
2017-08-07
发表期刊NPJ COMPUTATIONAL MATERIALS
ISSN2057-3960
卷号3页码:9
摘要First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.
DOI10.1038/s41524-017-0032-0
收录类别SCI
语种英语
资助项目US Department of Energy (DOE)[DE-FG02-96ER45571]
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Physical ; Materials Science, Multidisciplinary
WOS记录号WOS:000426833600001
出版者NATURE PUBLISHING GROUP
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5665
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ceder, Gerbrand
作者单位1.MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
2.Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
推荐引用方式
GB/T 7714
Huang, Wenxuan,Urban, Alexander,Rong, Ziqin,et al. Construction of ground-state preserving sparse lattice models for predictive materials simulations[J]. NPJ COMPUTATIONAL MATERIALS,2017,3:9.
APA Huang, Wenxuan,Urban, Alexander,Rong, Ziqin,Ding, Zhiwei,Luo, Chuan,&Ceder, Gerbrand.(2017).Construction of ground-state preserving sparse lattice models for predictive materials simulations.NPJ COMPUTATIONAL MATERIALS,3,9.
MLA Huang, Wenxuan,et al."Construction of ground-state preserving sparse lattice models for predictive materials simulations".NPJ COMPUTATIONAL MATERIALS 3(2017):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Wenxuan]的文章
[Urban, Alexander]的文章
[Rong, Ziqin]的文章
百度学术
百度学术中相似的文章
[Huang, Wenxuan]的文章
[Urban, Alexander]的文章
[Rong, Ziqin]的文章
必应学术
必应学术中相似的文章
[Huang, Wenxuan]的文章
[Urban, Alexander]的文章
[Rong, Ziqin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。