Institute of Computing Technology, Chinese Academy IR
A semi-supervised approximate spectral clustering algorithm based on HMRF model | |
Ding, Shifei1,2; Jia, Hongjie1,3; Du, Mingjing1,2; Xue, Yu4 | |
2018-03-01 | |
发表期刊 | INFORMATION SCIENCES |
ISSN | 0020-0255 |
卷号 | 429页码:215-228 |
摘要 | Before clustering, we usually have some background knowledge about the data structure. Pairwise constraints are commonly used background knowledge. For graph partition problems, pairwise constraints can be naturally added to the graph edge. This paper integrates pairwise constraints into the objective function of graph cuts and derive the semi-supervised approximate spectral clustering based on Hidden Markov Random Fields (HMRF). This algorithm utilize the mathematical connection between HMRF semi-supervised clustering and approximate weighted kernel k-means. The approximate weighted kernel k-means is used to calculate the optimal clustering results of HMRF spectral clustering. The effectiveness of the proposed algorithm is verified on several benchmark data sets. Experiments show that adding more pairwise constraints will help improve the clustering performance. Our method has advantages for the challenging clustering tasks of large-scale nonlinear data because of the high efficiency and less memory consumption. (C) 2017 Elsevier Inc. All rights reserved. |
关键词 | Semi-supervised learning Spectral clustering HMRF model Approximate weighted kernel k-means Matrix trace |
DOI | 10.1016/j.ins.2017.11.016 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundations of China[61672522] ; National Natural Science Foundations of China[61379101] ; National Key Basic Research Program of China[2013CB329502] ; Priority Academic Program Development of Jiangsu Higer Education Institutions (PAPD) ; Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology(CICAEET) |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000423653300015 |
出版者 | ELSEVIER SCIENCE INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/5619 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Ding, Shifei |
作者单位 | 1.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China 3.Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China 4.Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Ding, Shifei,Jia, Hongjie,Du, Mingjing,et al. A semi-supervised approximate spectral clustering algorithm based on HMRF model[J]. INFORMATION SCIENCES,2018,429:215-228. |
APA | Ding, Shifei,Jia, Hongjie,Du, Mingjing,&Xue, Yu.(2018).A semi-supervised approximate spectral clustering algorithm based on HMRF model.INFORMATION SCIENCES,429,215-228. |
MLA | Ding, Shifei,et al."A semi-supervised approximate spectral clustering algorithm based on HMRF model".INFORMATION SCIENCES 429(2018):215-228. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论