CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-label double-layer learning for cross-modal retrieval
He, Jianfeng1,2; Ma, Bingpeng1,2; Wang, Shuhui2; Liu, Yugui1; Huang, Qingming1,2
2018-01-31
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号275页码:1893-1902
摘要This paper proposes a novel method named Multi-label Double-layer Learning (MDLL) for multi-label cross-modal retrieval task. MDLL includes two stages (layers): L2C (Label to Common) and C2L (Common to Label). In the L2C stage, considering that labels can provide semantic information, we take label information as an auxiliary modality and apply a covariance matrix to represent label similarity in multi-label situation. Thus we can maximize the correlation of different modalities and reduce their semantic gap in the L2C stage. In addition, we find that samples with the same semantic labels may have different contents from users' view. According to this problem, in the C2L stage, labels are projected to a latent space learned from features of image and text. By this way, the label latent space are more related to the sample's contents. Then, it is noticed that the samples have same labels but various contents can be decreased. In MDLL, iterative learning of the L2C and C2L stages will improve the discriminative ability greatly and decline the discrepancy between the labels and the contents. To show the effectiveness of MDLL, some experiments are conducted on three multi-label cross-modal retrieval tasks (Pascal Voc 2007, Nus-wide, and LabelMe), on which competitive results are obtained. (C) 2017 Elsevier B.V. All rights reserved.
关键词Cross-modal retrieval Multi-label Multimedia Partial least squares
DOI10.1016/j.neucom.2017.10.032
收录类别SCI
语种英语
资助项目National Basic Research Program of China (973 Program)[2015CB351800] ; Natural Science Foundation of China (NSFC)[61332016] ; Natural Science Foundation of China (NSFC)[61572465] ; Natural Science Foundation of China (NSFC)[61672497] ; Natural Science Foundation of China (NSFC)[61620106009] ; Natural Science Foundation of China (NSFC)[U1636214] ; Natural Science Foundation of China (NSFC)[61650202] ; Key Research Program of Frontier Sciences[CAS: QYZDJ-SSW-SYS013]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000418370200176
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5542
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ma, Bingpeng
作者单位1.Univ China Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
推荐引用方式
GB/T 7714
He, Jianfeng,Ma, Bingpeng,Wang, Shuhui,et al. Multi-label double-layer learning for cross-modal retrieval[J]. NEUROCOMPUTING,2018,275:1893-1902.
APA He, Jianfeng,Ma, Bingpeng,Wang, Shuhui,Liu, Yugui,&Huang, Qingming.(2018).Multi-label double-layer learning for cross-modal retrieval.NEUROCOMPUTING,275,1893-1902.
MLA He, Jianfeng,et al."Multi-label double-layer learning for cross-modal retrieval".NEUROCOMPUTING 275(2018):1893-1902.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He, Jianfeng]的文章
[Ma, Bingpeng]的文章
[Wang, Shuhui]的文章
百度学术
百度学术中相似的文章
[He, Jianfeng]的文章
[Ma, Bingpeng]的文章
[Wang, Shuhui]的文章
必应学术
必应学术中相似的文章
[He, Jianfeng]的文章
[Ma, Bingpeng]的文章
[Wang, Shuhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。