CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Processor Design Space Exploration via Statistical Sampling and Semi-Supervised Ensemble Learning
Li, Dandan1; Yao, Shuzhen1; Wang, Ying2
2018
发表期刊IEEE ACCESS
ISSN2169-3536
卷号6页码:25495-25505
摘要The design space exploration (DSE) has become a major challenge in microprocessors design due to the increasing complexity of microprocessor architecture and the extremely time-consuming software simulation technology. To more effectively and efficiently perform DSE, recently machine learning techniques are widely explored to build predictive models with a small set of simulations. However, most previous models are supervised models and the training samples are randomly selected. Thus they still suffered from high simulation cost or low prediction accuracy. In order to minimize the simulation overhead for DSE, this paper proposes an efficient DSE method which combines Latin hypercube sampling and semi-supervised ensemble learning technique. Latin hypercube sampling is first employed to select a small set of representative design points for simulation. Then a semi-supervised learning based AdaBoost model (SemiBoost) is proposed to predict the responses of the configurations that have not been simulated. We conduct extensive evaluations on the benchmarks of SPEC CPU2006 suite, and the experimental results demonstrate that the proposed SemiBoost model is superior to existing state-of-the-art models in terms of both efficiency and effectiveness.
关键词Design space exploration Latin hypercube sampling adaboost microprocessor design
DOI10.1109/ACCESS.2018.2831079
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61504153] ; National Natural Science Foundation of China[61432017]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000433472100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5226
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Dandan
作者单位1.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Dandan,Yao, Shuzhen,Wang, Ying. Processor Design Space Exploration via Statistical Sampling and Semi-Supervised Ensemble Learning[J]. IEEE ACCESS,2018,6:25495-25505.
APA Li, Dandan,Yao, Shuzhen,&Wang, Ying.(2018).Processor Design Space Exploration via Statistical Sampling and Semi-Supervised Ensemble Learning.IEEE ACCESS,6,25495-25505.
MLA Li, Dandan,et al."Processor Design Space Exploration via Statistical Sampling and Semi-Supervised Ensemble Learning".IEEE ACCESS 6(2018):25495-25505.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Dandan]的文章
[Yao, Shuzhen]的文章
[Wang, Ying]的文章
百度学术
百度学术中相似的文章
[Li, Dandan]的文章
[Yao, Shuzhen]的文章
[Wang, Ying]的文章
必应学术
必应学术中相似的文章
[Li, Dandan]的文章
[Yao, Shuzhen]的文章
[Wang, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。