CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition
Hu, Lisha1,2,3; Chen, Yiqiang1,2,3; Wang, Jindong1,2,3; Hu, Chunyu1,2,3; Jiang, Xinlong1,2,3
2018-09-01
发表期刊INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
ISSN1868-8071
卷号9期号:9页码:1577-1590
摘要Miscellaneous mini-wearable devices (Jawbone Up, Apple Watch, Google Glass, et al.) have emerged in recent years to recognize the user's activities of daily living (ADLs) such as walking, running, climbing and bicycling. To better suits a target user, a generic activity recognition (AR) model inside the wearable devices requires to adapt itself according to the user's personality in terms of wearing styles and so on. In this paper, an online kernelized and regularized extreme learning machine (OKRELM) is proposed for wearable-based activity recognition. A small-scale but important subset of every incoming data chunk is chosen to go through the update stage during the online sequential learning. Therefore, OKRELM is a lightweight incremental learning model with less time consumption during the update and prediction phase, a robust and effective classifier compared with the batch learning scheme. The performance of OKRELM is evaluated and compared with several related approaches on a UCI online available AR dataset and experimental results show the efficiency and effectiveness of OKRELM.
关键词Extreme learning machine Kernel Activity recognition Online learning Wearable computing
DOI10.1007/s13042-017-0666-8
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61572471] ; Natural Science Foundation of China[61210010] ; Chinese Academy of Sciences Research Equipment Development Project[YZ201527] ; Science and Technology Planning Project of Guangdong Province[2015B010105001]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000441128800013
出版者SPRINGER HEIDELBERG
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/5062
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Chen, Yiqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Beijing Key Lab Mobile Comp & Pervas Device, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Hu, Lisha,Chen, Yiqiang,Wang, Jindong,et al. OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition[J]. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,2018,9(9):1577-1590.
APA Hu, Lisha,Chen, Yiqiang,Wang, Jindong,Hu, Chunyu,&Jiang, Xinlong.(2018).OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition.INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS,9(9),1577-1590.
MLA Hu, Lisha,et al."OKRELM: online kernelized and regularized extreme learning machine for wearable-based activity recognition".INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 9.9(2018):1577-1590.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Lisha]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
百度学术
百度学术中相似的文章
[Hu, Lisha]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
必应学术
必应学术中相似的文章
[Hu, Lisha]的文章
[Chen, Yiqiang]的文章
[Wang, Jindong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。