CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Dimensionality Reduction in Multiple Ordinal Regression
Zeng, Jiabei1; Liu, Yang2,3; Leng, Biao4; Xiong, Zhang4; Cheung, Yiu-ming2,3,5
2018-09-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号29期号:9页码:4088-4101
摘要Supervised dimensionality reduction (DR) plays an important role in learning systems with high-dimensional data. It projects the data into a low-dimensional subspace and keeps the projected data distinguishable in different classes. In addition to preserving the discriminant information for binary or multiple classes, some real-world applications also require keeping the preference degrees of assigning the data to multiple aspects, e.g., to keep the different intensities for co-occurring facial expressions or the product ratings in different aspects. To address this issue, we propose a novel supervised DR method for DR in multiple ordinal regression (DRMOR), whose projected subspace preserves all the ordinal information in multiple aspects or labels. We formulate this problem as a joint optimization framework to simultaneously perform DR and ordinal regression. In contrast to most existing DR methods, which are conducted independently of the subsequent classification or ordinal regression, the proposed framework fully benefits from both of the procedures. We experimentally demonstrate that the proposed DRMOR method (DRMOR-M) well preserves the ordinal information from all the aspects or labels in the learned subspace. Moreover, DRMOR-M exhibits advantages compared with representative DR or ordinal regression algorithms on three standard data sets.
关键词Dimensionality reduction (DR) multiple labels ordinal regression supervised
DOI10.1109/TNNLS.2017.2752003
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61472023] ; National Natural Science Foundation of China[61503317] ; National Natural Science Foundation of China[61272366] ; National Natural Science Foundation of China[61672444] ; National Natural Science Foundation of China[61702481] ; SZSTI[JCYJ20160531194006833] ; Faculty Research Grant of Hong Kong Baptist University[FRG2/16-17/032] ; Faculty Research Grant of Hong Kong Baptist University[FRG2/15-16/049] ; Faculty Research Grant of Hong Kong Baptist University[FRG2/16-17/051]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000443083700013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4998
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Leng, Biao
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
3.Hong Kong Baptist Univ, Inst Res & Continuing Educ, Shenzhen 518057, Peoples R China
4.Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
5.Beijing Normal Univ, Hong Kong Baptist Univ, United Int Coll, Zhuhai 519087, Peoples R China
推荐引用方式
GB/T 7714
Zeng, Jiabei,Liu, Yang,Leng, Biao,et al. Dimensionality Reduction in Multiple Ordinal Regression[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(9):4088-4101.
APA Zeng, Jiabei,Liu, Yang,Leng, Biao,Xiong, Zhang,&Cheung, Yiu-ming.(2018).Dimensionality Reduction in Multiple Ordinal Regression.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(9),4088-4101.
MLA Zeng, Jiabei,et al."Dimensionality Reduction in Multiple Ordinal Regression".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.9(2018):4088-4101.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zeng, Jiabei]的文章
[Liu, Yang]的文章
[Leng, Biao]的文章
百度学术
百度学术中相似的文章
[Zeng, Jiabei]的文章
[Liu, Yang]的文章
[Leng, Biao]的文章
必应学术
必应学术中相似的文章
[Zeng, Jiabei]的文章
[Liu, Yang]的文章
[Leng, Biao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。