CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Bundled Object Context for Referring Expressions
Li, Xiangyang1,2; Jiang, Shuqiang1,2
2018-10-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
ISSN1520-9210
卷号20期号:10页码:2749-2760
摘要Referring expressions are natural language descriptions of objects within a given scene. Context is of crucial importance for a referring expression, as the description not only depicts the properties of the object but also involves the relationships of the referred object with other ones. Most of previous work uses either the whole image or one particular contextual object as the context. However, the context of these approaches is holistic and insufficient, as a referring expression often describes relationships of multiple objects in an image. To leverage rich context information from all objects in an image, in this paper, we propose a novel scheme that is composed of a visual context long short-term memory (LSTM) module and a sentence LSTM module to model bundled object context for referring expressions. All contextual objects are arranged with their spatial locations and progressively fed into the visual context LSTM module to acquire and aggregate the context features. Then the concatenation of the learned context features and the features of the referred object are put into the sentence LSTM module to learn the probability of a referring expression. The feedback connections and internal gating mechanism of the LSTM cells enable our model to selectively propagate relevant contextual information through the whole network. Experiments on three benchmark datasets show that our methods can achieve promising results compared to state-of-the-art methods. Moreover, visualization of the internal states of the visual context LSTM cells also shows that our method can automatically select the pertinent context objects.
关键词Bundled object context referring expression LSTM vision-language
DOI10.1109/TMM.2018.2811621
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61532018] ; Beijing Municipal Commission of Science and Technology[D161100001816001] ; Lenovo Outstanding Young Scientists Program ; National Program for Special Support of Eminent Professionals ; National Program for Support of Top-notch Young Professionals
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000444903000017
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4920
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Shuqiang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiangyang,Jiang, Shuqiang. Bundled Object Context for Referring Expressions[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2018,20(10):2749-2760.
APA Li, Xiangyang,&Jiang, Shuqiang.(2018).Bundled Object Context for Referring Expressions.IEEE TRANSACTIONS ON MULTIMEDIA,20(10),2749-2760.
MLA Li, Xiangyang,et al."Bundled Object Context for Referring Expressions".IEEE TRANSACTIONS ON MULTIMEDIA 20.10(2018):2749-2760.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xiangyang]的文章
[Jiang, Shuqiang]的文章
百度学术
百度学术中相似的文章
[Li, Xiangyang]的文章
[Jiang, Shuqiang]的文章
必应学术
必应学术中相似的文章
[Li, Xiangyang]的文章
[Jiang, Shuqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。