CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PGC-Net: A Light Weight Convolutional Sequence Network for Digital Pressure Gauge Calibration
Li, Lei1; Li, Yong2,3; Lian, Kechao1; Bian, Xiaoyu1; Yang, Kuan1; Tian, Yongzhi1
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:123280-123288
摘要Automatic digital pressure gauge calibration is challenging due to various unconstrained conditions. Although existing CNN-RNN based methods have been almost perfect on scene text recognition, they fail to perform well on digital pressure gauge calibration that requires to be extremely computation-efficient and accurate. In this paper, we propose a light weight fully convolutional sequence recognition network for fast and accurate digital Pressure Gauge Calibration (PGC-Net). PGC-Net integrates feature extraction, sequence modelling and transcription into a unified framework. Experimental results show that PGC-Net runs 28 fps on CPU with 97.41% accuracy. Compared with previous methods, PGC-Net achieves better or comparable performance at lower inference time. Without bells and whistles, PGC-Net is capable of recognizing decimal points that usually appear in pressure gauge images, which evidently verifies the feasibility of PGC-Net. We collected a dataset that contains 17, 240 gauge images with annotated labels for automatic digital pressure gauge calibration. The dataset has been public for future research.
关键词Digital pressure gauge calibration automatic meter reading sequence text recognition light weight CNN digital gauge dataset
DOI10.1109/ACCESS.2019.2938106
收录类别SCI
语种英语
资助项目National Science Foundation of China[61505178] ; Henan Provincial Key Science and Technology Research Project[162102210018]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000487832600013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4681
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Yong
作者单位1.Zhengzhou Univ, Sch Phys & Engn, Zhengzhou 450001, Henan, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100049, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Li, Lei,Li, Yong,Lian, Kechao,et al. PGC-Net: A Light Weight Convolutional Sequence Network for Digital Pressure Gauge Calibration[J]. IEEE ACCESS,2019,7:123280-123288.
APA Li, Lei,Li, Yong,Lian, Kechao,Bian, Xiaoyu,Yang, Kuan,&Tian, Yongzhi.(2019).PGC-Net: A Light Weight Convolutional Sequence Network for Digital Pressure Gauge Calibration.IEEE ACCESS,7,123280-123288.
MLA Li, Lei,et al."PGC-Net: A Light Weight Convolutional Sequence Network for Digital Pressure Gauge Calibration".IEEE ACCESS 7(2019):123280-123288.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Lei]的文章
[Li, Yong]的文章
[Lian, Kechao]的文章
百度学术
百度学术中相似的文章
[Li, Lei]的文章
[Li, Yong]的文章
[Lian, Kechao]的文章
必应学术
必应学术中相似的文章
[Li, Lei]的文章
[Li, Yong]的文章
[Lian, Kechao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。