CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Multi-representation adaptation network for cross-domain image classification
Zhu, Yongchun1,2; Zhuang, Fuzhen1,2; Wang, Jindong3; Chen, Jingwu1,2; Shi, Zhiping4; Wu, Wenjuan5; He, Qing1,2
2019-11-01
发表期刊NEURAL NETWORKS
ISSN0893-6080
卷号119页码:214-221
摘要In image classification, it is often expensive and time-consuming to acquire sufficient labels. To solve this problem, domain adaptation often provides an attractive option given a large amount of labeled data from a similar nature but different domains. Existing approaches mainly align the distributions of representations extracted by a single structure and the representations may only contain partial information, e.g., only contain part of the saturation, brightness, and hue information. Along this line, we propose Multi-Representation Adaptation which can dramatically improve the classification accuracy for cross-domain image classification and specially aims to align the distributions of multiple representations extracted by a hybrid structure named Inception Adaptation Module (IAM). Based on this, we present Multi-Representation Adaptation Network (MRAN) to accomplish the cross-domain image classification task via multi-representation alignment which can capture the information from different aspects. In addition, we extend Maximum Mean Discrepancy (MMD) to compute the adaptation loss. Our approach can be easily implemented by extending most feed-forward models with IAM, and the network can be trained efficiently via back-propagation. Experiments conducted on three benchmark image datasets demonstrate the effectiveness of MRAN. (C) 2019 Elsevier Ltd. All rights reserved.
关键词Domain adaptation Multi-representation
DOI10.1016/j.neunet.2019.07.010
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018YFB1004300] ; National Natural Science Foundation of China[U1836206] ; National Natural Science Foundation of China[U1811461] ; National Natural Science Foundation of China[61773361] ; Project of Youth Innovation Promotion Association CAS[2017146]
WOS研究方向Computer Science ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Neurosciences
WOS记录号WOS:000488199200017
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
被引频次:172[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4639
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhu, Yongchun; Zhuang, Fuzhen
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Microsoft Res, Beijing, Peoples R China
4.Capital Normal Univ, Beijing, Peoples R China
5.Renmin Univ China, Sch Informat, Beijing 100872, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Yongchun,Zhuang, Fuzhen,Wang, Jindong,et al. Multi-representation adaptation network for cross-domain image classification[J]. NEURAL NETWORKS,2019,119:214-221.
APA Zhu, Yongchun.,Zhuang, Fuzhen.,Wang, Jindong.,Chen, Jingwu.,Shi, Zhiping.,...&He, Qing.(2019).Multi-representation adaptation network for cross-domain image classification.NEURAL NETWORKS,119,214-221.
MLA Zhu, Yongchun,et al."Multi-representation adaptation network for cross-domain image classification".NEURAL NETWORKS 119(2019):214-221.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Yongchun]的文章
[Zhuang, Fuzhen]的文章
[Wang, Jindong]的文章
百度学术
百度学术中相似的文章
[Zhu, Yongchun]的文章
[Zhuang, Fuzhen]的文章
[Wang, Jindong]的文章
必应学术
必应学术中相似的文章
[Zhu, Yongchun]的文章
[Zhuang, Fuzhen]的文章
[Wang, Jindong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。