CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Semantic Feature Learning for Heterogeneous Multitask Classification via Non-Negative Matrix Factorization
Zhuang, Fuzhen1,2; Li, Xuebing3,4; Jin, Xin5; Zhang, Dapeng4; Qiu, Lirong6; He, Qing1,2
2018-08-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号48期号:8页码:2284-2293
摘要Multitask learning (MTL) aims to learn multiple related tasks simultaneously instead of separately to improve the generalization performance of each task. Most existing MTL methods assumed that the multiple tasks to be learned have the same feature representation. However, this assumption may not hold for many real-world applications. In this paper, we study the problem of MTL with heterogeneous features for each task. To address this problem, we first construct an integrated graph of a set of bipartite graphs to build a connection among different tasks. We then propose a non-negative matrix factorization-based multitask method (MTNMF) to learn a common semantic feature space underlying different heterogeneous feature spaces of each task. Moreover, an improved version of MTNMF (IMTNMF) is proposed, in which we do not need to construct the correlation matrix between input features and class labels, avoiding the information loss. Finally, based on the common semantic features and original heterogeneous features, we model the heterogenous MTL problem as a multitask multiview learning (MTMVL) problem. In this way, a number of existing MTMVL methods can be applied to solve the problem effectively. Extensive experiments on three real-world problems demonstrate the effectiveness of our proposed methods, and the improved version IMTNMF can gain about 2% average accuracy improvement compared with MTNMF.
关键词Heterogeneous features multitask learning (MTL) non-negative matrix factorization (NMF) semantic feature learning
DOI10.1109/TCYB.2017.2732818
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61473273] ; National Natural Science Foundation of China[91546122] ; National Natural Science Foundation of China[61573335] ; National Natural Science Foundation of China[6177021035] ; Guangdong Provincial Science and Technology plan projects[2015 B010109005] ; 2015 Microsoft Research Asia Collaborative Research Program ; Youth Innovation Promotion Association CAS[2017146]
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000439363600006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4576
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhuang, Fuzhen; Qiu, Lirong
作者单位1.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Yanshan Univ, Coll Informat Sci & Engn, Qinhuangdao, Peoples R China
5.Huawei Technol Co Ltd, Shenzhen, Peoples R China
6.Minzu Univ China, Sch Informat Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zhuang, Fuzhen,Li, Xuebing,Jin, Xin,et al. Semantic Feature Learning for Heterogeneous Multitask Classification via Non-Negative Matrix Factorization[J]. IEEE TRANSACTIONS ON CYBERNETICS,2018,48(8):2284-2293.
APA Zhuang, Fuzhen,Li, Xuebing,Jin, Xin,Zhang, Dapeng,Qiu, Lirong,&He, Qing.(2018).Semantic Feature Learning for Heterogeneous Multitask Classification via Non-Negative Matrix Factorization.IEEE TRANSACTIONS ON CYBERNETICS,48(8),2284-2293.
MLA Zhuang, Fuzhen,et al."Semantic Feature Learning for Heterogeneous Multitask Classification via Non-Negative Matrix Factorization".IEEE TRANSACTIONS ON CYBERNETICS 48.8(2018):2284-2293.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
[Jin, Xin]的文章
百度学术
百度学术中相似的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
[Jin, Xin]的文章
必应学术
必应学术中相似的文章
[Zhuang, Fuzhen]的文章
[Li, Xuebing]的文章
[Jin, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。