CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Two Birds With One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics From Multimodal Web Data
Pang, Junbiao1; Tao, Fei2; Huang, Qingming3,4; Tian, Qi5,6; Yin, Baocai7,8
2019-08-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号30期号:8页码:2397-2409
摘要Organizing multimodal Web pages into hot topics is the core step to grasp trends on the Web. However, the less-constrained social media generate noisy user-generated content, which makes a detected topic be less coherent and less interpretable. In this paper, we address this problem by proposing a coupled Poisson deconvolution to jointly handle topic detection and topic description. For the topic detection, the interestingness of a topic is estimated from the similarities refined by the description of topics; for the topic description, the interestingness of topics is leveraged to describe topics. Two processes cyclically detect interesting topics and generate the multimodal description of topics. This is the innovation of this paper, which just likes killing two birds with one stone. Experiments not only show the significantly improved accuracies for the topic detection but also demonstrate the interpretable descriptions for the topic description on two public data sets.
关键词Multimodal description Poisson deconvolution (PD) topic coherent topic description topic detection on Web
DOI10.1109/TNNLS.2018.2872997
收录类别SCI
语种英语
资助项目Natural Science Foundation of China[61672069] ; Natural Science Foundation of China[61872333] ; Natural Science Foundation of China[61472387] ; Natural Science Foundation of China[61332016] ; Natural Science Foundation of China[61620106009] ; Natural Science Foundation of China[U1636214] ; Natural Science Foundation of China[61650202] ; National Basic Research Program of China (973 Program)[2015CB351800] ; China Post-Doctoral Research Foundation ; Beijing Municipal Commission of Education[KM201610005034] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; National Science Foundation of China[61429201] ; ARO[W911NF-15-1-0290] ; NEC Laboratories of America and Blippar ; Blippar
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000476787300013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4511
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Huang, Qingming
作者单位1.Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
2.Beijing Qihoo Technol Co Ltd, Beijing 100015, Peoples R China
3.Chinese Acad Sci, Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
5.Huawei Noahs Ark Lab, Shenzhen 518129, Peoples R China
6.Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
7.Dalian Univ Technol, Dalian 116024, Peoples R China
8.Beijing Univ Technol, Beijing 100124, Peoples R China
推荐引用方式
GB/T 7714
Pang, Junbiao,Tao, Fei,Huang, Qingming,et al. Two Birds With One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics From Multimodal Web Data[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2019,30(8):2397-2409.
APA Pang, Junbiao,Tao, Fei,Huang, Qingming,Tian, Qi,&Yin, Baocai.(2019).Two Birds With One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics From Multimodal Web Data.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,30(8),2397-2409.
MLA Pang, Junbiao,et al."Two Birds With One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics From Multimodal Web Data".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 30.8(2019):2397-2409.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Huang, Qingming]的文章
百度学术
百度学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Huang, Qingming]的文章
必应学术
必应学术中相似的文章
[Pang, Junbiao]的文章
[Tao, Fei]的文章
[Huang, Qingming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。