CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Exploiting Aesthetic Features in Visual Contents for Movie Recommendation
Chen, Xiaojie1; Zhao, Pengpeng1,2; Liu, Yanchi3; Zhao, Lei1; Fang, Junhua1; Sheng, Victor S.4; Cui, Zhiming5
2019
发表期刊IEEE ACCESS
ISSN2169-3536
卷号7页码:49813-49821
摘要As one of the most widely used recommender systems, movie recommendation plays an important role in our life. However, the data sparsity problem severely hinders the effectiveness of personalized movie recommendation, which requires more rich content information to be utilized. Posters and still frames, which directly display the visual contents of movies, have significant influences on movie recommendation. They not only reveal rich knowledge for understanding movies but also useful for understanding user preferences. However, existing recommendation methods rarely consider aesthetic features, which tell how the movie looks and feels, extracted from these pictures for the movie recommendation. To this end, in this paper, we propose an aesthetic-aware unified visual content matrix factorization (called UVMF-AES) to integrate visual feature learning and recommendation into a unified framework. Specifically, we first integrate the convolutional neural network (CNN) features and aesthetic features into probabilistic matrix factorization. Then we establish a unified optimization framework with these features for the movie recommendation. The experimental results on two real-world datasets show that our proposed method UVMF-AES is significantly superior to the state-of-the-art methods on movie recommendation.
关键词Movie recommendation aesthetic features probabilistic matrix factorization
DOI10.1109/ACCESS.2019.2910722
收录类别SCI
语种英语
资助项目NSFC[61876217] ; NSFC[61872258] ; NSFC[61728205] ; Suzhou Science and Technology Development Program[SYG201803] ; Postdoctoral Research Foundation of China[2017M621813] ; Natural Science Fund for Colleges and Universities in Jiangsu Province[18KJB520044] ; Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences[IIP2019-1]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000466916200001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4258
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Pengpeng
作者单位1.Soochow Univ, Sch Comp Sci & Technol, Inst Artificial Intelligence, Suzhou 215006, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Rutgers State Univ, Management Sci & Informat Syst, New Brunswick, NJ 08901 USA
4.Univ Cent Arkansas, Comp Sci Dept, Conway, AR 72035 USA
5.Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou 215009, Peoples R China
推荐引用方式
GB/T 7714
Chen, Xiaojie,Zhao, Pengpeng,Liu, Yanchi,et al. Exploiting Aesthetic Features in Visual Contents for Movie Recommendation[J]. IEEE ACCESS,2019,7:49813-49821.
APA Chen, Xiaojie.,Zhao, Pengpeng.,Liu, Yanchi.,Zhao, Lei.,Fang, Junhua.,...&Cui, Zhiming.(2019).Exploiting Aesthetic Features in Visual Contents for Movie Recommendation.IEEE ACCESS,7,49813-49821.
MLA Chen, Xiaojie,et al."Exploiting Aesthetic Features in Visual Contents for Movie Recommendation".IEEE ACCESS 7(2019):49813-49821.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Xiaojie]的文章
[Zhao, Pengpeng]的文章
[Liu, Yanchi]的文章
百度学术
百度学术中相似的文章
[Chen, Xiaojie]的文章
[Zhao, Pengpeng]的文章
[Liu, Yanchi]的文章
必应学术
必应学术中相似的文章
[Chen, Xiaojie]的文章
[Zhao, Pengpeng]的文章
[Liu, Yanchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。