CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images
Guo, Song1,2; Li, Tao1,2; Kang, Hong1,2,3; Li, Ning1,2; Zhang, Yujun4; Wang, Kai1,5
2019-07-15
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号349页码:52-63
摘要Diabetic retinopathy and diabetic macular edema are the two leading causes for blindness in working-age people, and the quantitative and qualitative diagnosis of these two diseases usually depends on the presence and areas of lesions in fundus images. The main related lesions include soft exudates, hard exudates, microaneurysms, and haemorrhages. However, segmentation of these four kinds of lesions is difficult due to their uncertainty in size, contrast, and high interclass similarity. Therefore, we aim to design a multi-lesion segmentation model. We have designed the first small object segmentation network (L-Seg) that can segment the four kinds of lesions simultaneously. Taking into account that small lesion regions could not response at high level of network, we propose a multi-scale feature fusion method to handle this problem. In addition, when considering the cases of both class-imbalance and loss-imbalance problems, we propose a multi-channel bin loss. We have evaluated L-Seg on three fundus datasets including two publicly available datasets - IDRiD and e-ophtha and one private dataset - DDR. Extensive experiments have demonstrated that L-Seg achieves better performance in small lesion segmentation than other deep learning models and traditional methods. Specially, the mAUC score of L-Seg is over 16.8%, 1.51% and 3.11% higher than that of DeepLab v3 + on IDRiD, e-ophtha and DDR datasets, respectively. Moreover, our framework shows competitive performance compared with top-3 teams in IDRiD challenge. (C) 2019 Elsevier B. V. All rights reserved.
关键词Multi-lesion segmentation Fundus image Diabetic retinopathy Class-imbalance
DOI10.1016/j.neucom.2019.04.019
收录类别SCI
语种英语
资助项目National Natural Science Foundation[61872200] ; National Key Research and Development Program of China[2018YFB1003405] ; National Key Research and Development Program of China[2016YFC0400709] ; Natural Science Foundation of Tianjin[18YFYZCG00060]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000467536900006
出版者ELSEVIER SCIENCE BV
引用统计
被引频次:79[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4252
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wang, Kai
作者单位1.Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
2.Nankai Univ, Tianjin Key Lab Network & Data Secur Technol, Tianjin, Peoples R China
3.Beijing Shanggong Med Technol Co Ltd, Beijing, Peoples R China
4.Chinese Acad, Inst Comp Technol, Beijing, Peoples R China
5.Key Lab Med Data Anal & Stat Res Tianjin, Tianjin, Peoples R China
推荐引用方式
GB/T 7714
Guo, Song,Li, Tao,Kang, Hong,et al. L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images[J]. NEUROCOMPUTING,2019,349:52-63.
APA Guo, Song,Li, Tao,Kang, Hong,Li, Ning,Zhang, Yujun,&Wang, Kai.(2019).L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images.NEUROCOMPUTING,349,52-63.
MLA Guo, Song,et al."L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images".NEUROCOMPUTING 349(2019):52-63.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Song]的文章
[Li, Tao]的文章
[Kang, Hong]的文章
百度学术
百度学术中相似的文章
[Guo, Song]的文章
[Li, Tao]的文章
[Kang, Hong]的文章
必应学术
必应学术中相似的文章
[Guo, Song]的文章
[Li, Tao]的文章
[Kang, Hong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。