CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation
Xu, Jun1; Zeng, Wei2; Lan, Yanyan2; Guo, Jiafeng2; Cheng, Xueqi2
2019-06-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
ISSN1041-4347
卷号31期号:6页码:1181-1193
摘要Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solution of a linear Ranking SVM model can be written as a linear combination of the preference pairs, i.e., w = Sigma((i,j)) alpha(ij) (x(i) - x(j)), where alpha(ij) denotes the Lagrange parameters associated with each preference pair (i, j). It is observed that there exist obvious interactions among the document pairs because two preference pairs could share a same document as their items, e.g., preference pairs (d(1), d(2)) and (d(1), d(3)) share the document d(1). Thus it is natural to ask if there also exist interactions over the model parameters alpha(ij), which may be leveraged to construct better ranking models. This paper aims to answer the question. We empirically found that there exists a low-rank structure over the rearranged Ranking SVM model parameters alpha(ij), which indicates that the interactions do exist. Based on the discovery, we made modifications on the original Ranking SVM model by explicitly applying low-rank constraints to the Lagrange parameters, achieving two novel algorithms called Factorized Ranking SVM and Regularized Ranking SVM, respectively. Specifically, in Factorized Ranking SVM each parameter alpha(ij) is decomposed as a product of two low-dimensional vectors, i.e., alpha(ij) = < v(i), v(j)>, where vectors v(i) and v(j) correspond to document i and j, respectively; In Regularized Ranking SVM, a nuclear norm is applied to the rearranged parameters matrix for controlling its rank. Experimental results on three LETOR datasets show that both of the proposed methods can outperform state-of-the-art learning to rank models including the conventional Ranking SVM.
关键词Learning to rank ranking SVM parameter interactions low-rank approximation
DOI10.1109/TKDE.2018.2851257
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[61872338] ; National Natural Science Foundation of China (NSFC)[61773362] ; National Natural Science Foundation of China (NSFC)[61425016] ; National Natural Science Foundation of China (NSFC)[61472401] ; National Natural Science Foundation of China (NSFC)[61722211] ; Youth Innovation Promotion Association CAS[20144310] ; Youth Innovation Promotion Association CAS[2016102]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000466933700012
出版者IEEE COMPUTER SOC
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4248
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Jun
作者单位1.Renmin Univ China, Sch Informat, Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, CAS Key Lab Network Data Sci & Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jun,Zeng, Wei,Lan, Yanyan,et al. Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2019,31(6):1181-1193.
APA Xu, Jun,Zeng, Wei,Lan, Yanyan,Guo, Jiafeng,&Cheng, Xueqi.(2019).Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,31(6),1181-1193.
MLA Xu, Jun,et al."Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 31.6(2019):1181-1193.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jun]的文章
[Zeng, Wei]的文章
[Lan, Yanyan]的文章
百度学术
百度学术中相似的文章
[Xu, Jun]的文章
[Zeng, Wei]的文章
[Lan, Yanyan]的文章
必应学术
必应学术中相似的文章
[Xu, Jun]的文章
[Zeng, Wei]的文章
[Lan, Yanyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。