CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
XAI-Based Framework for Protocol Anomaly Classification and Identification to 6G NTNs with Drones
Sun, Qian1,2,3; Zeng, Jie4; Dai, Lulu1,2; Hu, Yangliu5; Tian, Lin1,2,3
2025-04-23
发表期刊DRONES
卷号9期号:5页码:31
摘要Although deep learning (DL) methods are effective for detecting protocol attacks involving drones in sixth-generation (6G) nonterrestrial networks (NTNs), classifying novel attacks and identifying anomalous sequences remain challenging. The internal capture processes and matching results of DL models are useful for addressing these issues. The key challenges involve obtaining this internal information from DL-based anomaly detection methods, using this internal information to establish new classifications for uncovered protocol attacks and tracing the input back to the anomalous protocol sequences. Therefore, in this paper, we propose an interpretable anomaly classification and identification method for 6G NTN protocols. We design an interpretable anomaly detection framework for 6G NTN protocols. In particular, we introduce explainable artificial intelligence (XAI) techniques to obtain internal information, including the matching results and capture process, and design a collaborative approach involving different detection methods to utilize this internal information. We also design a self-evolving classification method for the proposed interpretable framework to classify uncovered protocol attacks. The rule and baseline detection approaches are made transparent and work synergistically to extract and learn from the fingerprint features of the uncovered protocol attacks. Furthermore, we propose an online method to identify anomalous protocol sequences; this intrinsic interpretable identification approach is based on a two-layer deep neural network (DNN) model. The simulation results show that the proposed classification and identification methods can be effectively used to classify uncovered protocol attacks and identify anomalous protocol sequences, with the precision increasing by a maximum of 32.8% and at least 26%, respectively, compared with that of existing methods.
关键词drone 6G NTN self-evolving protocol anomaly classification online anomalous protocol identification XAI
DOI10.3390/drones9050324
收录类别SCI
语种英语
资助项目Beijing Natural Science Foundation ; National Natural Science Foundation of China[62371039] ; [L222004]
WOS研究方向Remote Sensing
WOS类目Remote Sensing
WOS记录号WOS:001496182800001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42410
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zeng, Jie; Tian, Lin
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Nanjing Inst InforSuperBahn, Nanjing 211100, Peoples R China
4.Beijing Inst Technol, Sch Cyberspace Sci & Technol, Beijing 100081, Peoples R China
5.Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450052, Peoples R China
推荐引用方式
GB/T 7714
Sun, Qian,Zeng, Jie,Dai, Lulu,et al. XAI-Based Framework for Protocol Anomaly Classification and Identification to 6G NTNs with Drones[J]. DRONES,2025,9(5):31.
APA Sun, Qian,Zeng, Jie,Dai, Lulu,Hu, Yangliu,&Tian, Lin.(2025).XAI-Based Framework for Protocol Anomaly Classification and Identification to 6G NTNs with Drones.DRONES,9(5),31.
MLA Sun, Qian,et al."XAI-Based Framework for Protocol Anomaly Classification and Identification to 6G NTNs with Drones".DRONES 9.5(2025):31.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Qian]的文章
[Zeng, Jie]的文章
[Dai, Lulu]的文章
百度学术
百度学术中相似的文章
[Sun, Qian]的文章
[Zeng, Jie]的文章
[Dai, Lulu]的文章
必应学术
必应学术中相似的文章
[Sun, Qian]的文章
[Zeng, Jie]的文章
[Dai, Lulu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。