CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Generating 3D fish motion skeleton via iterative optimization method and FishSkeletonNet
Shi, Min1; Zhao, Guo-liang1; Guo, Shi-sheng1; Sun, Bi-lian1; Zhu, Deng-ming2; Chai, Xiu-juan3,4; Li, Zhao-xin3,4; Zhuo, Xin-ru1
2025-05-25
发表期刊VISUAL COMPUTER
ISSN0178-2789
页码13
摘要The fish motion skeleton serves as the foundation for 3D fish motion modeling, enabling the manipulation of fish posture deformations and movements, while also providing a robust framework for analyzing fish behavior to assess their health status and overall performance. However, the joints within the fish motion skeleton, responsible for driving the fish's movements, are not always stable, which undergo changes as the fish grows. The unstable topology of the skeleton poses a challenge when attempting to simulate a lifelike fish skeleton. In this paper, we present a novel method for generating a 3D fish skeleton based on fish posture data. Our approach establishes an initial motion skeleton including the spine and fins. We then determine its parameters, encompassing joint positions and the number of joints, through iterative optimization, employing collected data from fish with various shapes and five common postures as constraints. Furthermore, the skeletons generated through this optimization process are utilized as sample data for training the FishSkeletonNet network, a framework introduced in this paper for predicting fish motion skeletons of input 3D fish bodies. To validate the effectiveness of our approach, we introduce a new dataset of grass carp postures, on which we carry out experiments and conduct both quantitative and qualitative evaluations. The experiments illustrate that our method generates fish motion skeletons that closely emulate the actual motion skeleton structure of fish, demonstrating a higher level of biological plausibility compared to existing methods.
关键词3D fish body Fish motion skeleton Fish posture Iterative optimization Neural network
DOI10.1007/s00371-025-03984-9
收录类别SCI
语种英语
资助项目Scientific Instrument Developing Project of the Chinese Academy of Sciences[YJKYYQ20190055] ; National Natural Sciences Foundation of China[62172392] ; Beijing Smart Agriculture innovation Consortium Project[BAlC10-2024] ; Basic Research Center, Innovation Program of Chinese Academy of Agricultural Sciences[CAAS-BRC-SAE-2025-01] ; Basic Research Center, Innovation Program of Chinese Academy of Agricultural Sciences[CAAS-ASTIP-2025-AII] ; Major industrial Research Projects for the Conversion of Old and New Dynamics in Shandong Province[2021-55] ; Innovation Program of Chinese Academy of Agricultural Sciences[CAAS-BRC-SAE-2025-01]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001493965000001
出版者SPRINGER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42400
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Zhao-xin
作者单位1.North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Prospective Res Lab, Beijing 100190, Peoples R China
3.Chinese Acad Agr Sci, Agr Informat Inst, Beijing 100081, Peoples R China
4.Minist Agr & Rural Affairs, Key Lab Agr Big Data, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Shi, Min,Zhao, Guo-liang,Guo, Shi-sheng,et al. Generating 3D fish motion skeleton via iterative optimization method and FishSkeletonNet[J]. VISUAL COMPUTER,2025:13.
APA Shi, Min.,Zhao, Guo-liang.,Guo, Shi-sheng.,Sun, Bi-lian.,Zhu, Deng-ming.,...&Zhuo, Xin-ru.(2025).Generating 3D fish motion skeleton via iterative optimization method and FishSkeletonNet.VISUAL COMPUTER,13.
MLA Shi, Min,et al."Generating 3D fish motion skeleton via iterative optimization method and FishSkeletonNet".VISUAL COMPUTER (2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shi, Min]的文章
[Zhao, Guo-liang]的文章
[Guo, Shi-sheng]的文章
百度学术
百度学术中相似的文章
[Shi, Min]的文章
[Zhao, Guo-liang]的文章
[Guo, Shi-sheng]的文章
必应学术
必应学术中相似的文章
[Shi, Min]的文章
[Zhao, Guo-liang]的文章
[Guo, Shi-sheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。