CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction
Fan, Xuan1,2,3; He, Zihao4; Guo, Jing6; Bu, Dechao8; Han, Dongchen2,3; Qu, Xinchi2,3; Li, Qihang5; Cheng, Sen7; Han, Aiqing1,3; Guo, Jincheng2,3
2025-04-24
发表期刊SCIENTIFIC REPORTS
ISSN2045-2322
卷号15期号:1页码:17
摘要Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data from glioblastoma (GBM) and low-grade glioma (LGG) samples, we identified 55 distinct cell states via the EcoTyper framework, validated for stability and prognostic impact in an independent cohort. We constructed multi-omics datasets of 620 samples, integrating transcriptomic, copy number variation (CNV), somatic mutation (MUT), Microbe (MIC), EcoTyper result data. A scRNA-seq enhanced Self-Normalizing Network-based glioma prognosis model achieved a C-index of 0.822 (training) and 0.817 (test), with AUC values of 0.867, 0.876, and 0.844 at 1, 3, and 5 years in the training set, and 0.820, 0.947, and 0.936 in the test set. Gradient attribution analysis enhanced the interpretability of the model and identified key molecular markers. The classification into high- and low-risk groups was validated as an independent prognostic factor. HDAC inhibitors are proposed as potential treatments. This study demonstrates the potential of integrating scRNA-seq and multi-omics data for robust glioma prognosis and clinical decision-making support.
DOI10.1038/s41598-025-98565-0
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFF1203303] ; Ningbo Science and Technology Innovation Yongjiang 2035 Project[2024Z229]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001475735000048
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42390
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cheng, Sen; Han, Aiqing; Guo, Jincheng
作者单位1.Beijing Univ Chinese Med, Sch Management, Ningbo, Peoples R China
2.Beijing Univ Chinese Med, Sch Tradit Chinese Med, Ningbo, Peoples R China
3.Beijing Univ Chinese Med, Beijing 100029, Peoples R China
4.Ningbo 2 Hosp, Ningbo 315010, Peoples R China
5.Henan Univ, Kaifeng 475004, Peoples R China
6.Peking Univ, Peking Univ Hosp 3, Dept Neurosurg, Beijing, Peoples R China
7.Capital Med Univ, Dept Neurosurg, Affiliated Beijing Shijitan Hosp, Beijing 100038, Peoples R China
8.Chinese Acad Sci, Inst Comp Technol, Res Ctr Ubiquitous Comp Syst, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Fan, Xuan,He, Zihao,Guo, Jing,et al. Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction[J]. SCIENTIFIC REPORTS,2025,15(1):17.
APA Fan, Xuan.,He, Zihao.,Guo, Jing.,Bu, Dechao.,Han, Dongchen.,...&Guo, Jincheng.(2025).Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.SCIENTIFIC REPORTS,15(1),17.
MLA Fan, Xuan,et al."Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction".SCIENTIFIC REPORTS 15.1(2025):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fan, Xuan]的文章
[He, Zihao]的文章
[Guo, Jing]的文章
百度学术
百度学术中相似的文章
[Fan, Xuan]的文章
[He, Zihao]的文章
[Guo, Jing]的文章
必应学术
必应学术中相似的文章
[Fan, Xuan]的文章
[He, Zihao]的文章
[Guo, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。