CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LDM: Large tensorial SDF model for textured mesh generation
Xie, Rengan1; Huang, Kai4; Luo, Xiaoliang5; Chen, Yizheng2; Wang, Lvchun5; Wang, Qi1; Ye, Qi3; Chen, Wei1; Zheng, Wenting1; Huo, Yuchi1,2
2025-08-01
发表期刊GRAPHICAL MODELS
ISSN1524-0703
卷号140页码:13
摘要Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a Large tensorial SDF Model, which introduces a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds. The project code is available at https://github.com/rgxie/LDM.
关键词3D generation model Diffusion Intrinsic decomposition Relighting
DOI10.1016/j.gmod.2025.101271
收录类别SCI
语种英语
资助项目Zhejiang Province Jianbing Research and Development Project[2023C01042] ; National Key R&D Program of China[2023YFF0905102] ; Key Research and Development Program of Zhejiang Province[2025C01064] ; NSFC[U22B2034]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001520783400001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42302
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Huo, Yuchi
作者单位1.Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Peoples R China
2.Zhejiang Lab, Hangzhou, Peoples R China
3.Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
5.Mobile Jiangxi Virtual Real Technol Co Ltd, Nanchang, Peoples R China
推荐引用方式
GB/T 7714
Xie, Rengan,Huang, Kai,Luo, Xiaoliang,et al. LDM: Large tensorial SDF model for textured mesh generation[J]. GRAPHICAL MODELS,2025,140:13.
APA Xie, Rengan.,Huang, Kai.,Luo, Xiaoliang.,Chen, Yizheng.,Wang, Lvchun.,...&Huo, Yuchi.(2025).LDM: Large tensorial SDF model for textured mesh generation.GRAPHICAL MODELS,140,13.
MLA Xie, Rengan,et al."LDM: Large tensorial SDF model for textured mesh generation".GRAPHICAL MODELS 140(2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Luo, Xiaoliang]的文章
百度学术
百度学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Luo, Xiaoliang]的文章
必应学术
必应学术中相似的文章
[Xie, Rengan]的文章
[Huang, Kai]的文章
[Luo, Xiaoliang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。