Institute of Computing Technology, Chinese Academy IR
| LDM: Large tensorial SDF model for textured mesh generation | |
| Xie, Rengan1; Huang, Kai4; Luo, Xiaoliang5; Chen, Yizheng2; Wang, Lvchun5; Wang, Qi1; Ye, Qi3; Chen, Wei1; Zheng, Wenting1; Huo, Yuchi1,2 | |
| 2025-08-01 | |
| 发表期刊 | GRAPHICAL MODELS
![]() |
| ISSN | 1524-0703 |
| 卷号 | 140页码:13 |
| 摘要 | Previous efforts have managed to generate production-ready 3D assets from text or images. However, these methods primarily employ NeRF or 3D Gaussian representations, which are not adept at producing smooth, high-quality geometries required by modern rendering pipelines. In this paper, we propose LDM, a Large tensorial SDF Model, which introduces a novel feed-forward framework capable of generating high-fidelity, illumination-decoupled textured mesh from a single image or text prompts. We firstly utilize a multi-view diffusion model to generate sparse multi-view inputs from single images or text prompts, and then a transformer-based model is trained to predict a tensorial SDF field from these sparse multi-view image inputs. Finally, we employ a gradient-based mesh optimization layer to refine this model, enabling it to produce an SDF field from which high-quality textured meshes can be extracted. Extensive experiments demonstrate that our method can generate diverse, high-quality 3D mesh assets with corresponding decomposed RGB textures within seconds. The project code is available at https://github.com/rgxie/LDM. |
| 关键词 | 3D generation model Diffusion Intrinsic decomposition Relighting |
| DOI | 10.1016/j.gmod.2025.101271 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | Zhejiang Province Jianbing Research and Development Project[2023C01042] ; National Key R&D Program of China[2023YFF0905102] ; Key Research and Development Program of Zhejiang Province[2025C01064] ; NSFC[U22B2034] |
| WOS研究方向 | Computer Science |
| WOS类目 | Computer Science, Software Engineering |
| WOS记录号 | WOS:001520783400001 |
| 出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/42302 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Huo, Yuchi |
| 作者单位 | 1.Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Peoples R China 2.Zhejiang Lab, Hangzhou, Peoples R China 3.Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China 5.Mobile Jiangxi Virtual Real Technol Co Ltd, Nanchang, Peoples R China |
| 推荐引用方式 GB/T 7714 | Xie, Rengan,Huang, Kai,Luo, Xiaoliang,et al. LDM: Large tensorial SDF model for textured mesh generation[J]. GRAPHICAL MODELS,2025,140:13. |
| APA | Xie, Rengan.,Huang, Kai.,Luo, Xiaoliang.,Chen, Yizheng.,Wang, Lvchun.,...&Huo, Yuchi.(2025).LDM: Large tensorial SDF model for textured mesh generation.GRAPHICAL MODELS,140,13. |
| MLA | Xie, Rengan,et al."LDM: Large tensorial SDF model for textured mesh generation".GRAPHICAL MODELS 140(2025):13. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论