CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Hierarchical Attention for Part-Aware Face Detection
Wu, Shuzhe1,2; Kan, Meina1; Shan, Shiguang1,2,3; Chen, Xilin1,3
2019-06-01
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION
ISSN0920-5691
卷号127期号:6-7页码:560-578
摘要Expressive representations for characterizing face appearances are essential for accurate face detection. Due to different poses, scales, illumination, occlusion, etc, face appearances generally exhibit substantial variations, and the contents of each local region (facial part) vary from one face to another. Current detectors, however, particularly those based on convolutional neural networks, apply identical operations (e.g. convolution or pooling) to all local regions on each face for feature aggregation (in a generic sliding-window configuration), and take all local features as equally effective for the detection task. In such methods, not only is each local feature suboptimal due to ignoring region-wise distinctions, but also the overall face representations are semantically inconsistent. To address the issue, we design a hierarchical attention mechanism to allow adaptive exploration of local features. Given a face proposal, part-specific attention modeled as learnable Gaussian kernels is proposed to search for proper positions and scales of local regions to extract consistent and informative features of facial parts. Then face-specific attention predicted with LSTM is introduced to model relations between the local parts and adjust their contributions to the detection tasks. Such hierarchical attention leads to a part-aware face detector, which forms more expressive and semantically consistent face representations. Extensive experiments are performed on three challenging face detection datasets to demonstrate the effectiveness of our hierarchical attention and make comparisons with state-of-the-art methods.
关键词Hierarchical attention Face detection Object detection Deformation Part-aware
DOI10.1007/s11263-019-01157-5
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2017YFA0700800] ; Natural Science Foundation of China[61390511] ; Natural Science Foundation of China[61650202] ; Natural Science Foundation of China[61772496] ; Natural Science Foundation of China[61402443]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000468525900003
出版者SPRINGER
引用统计
被引频次:50[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4230
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Shan, Shiguang
作者单位1.Chinese Acad Sci, ICT, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
2.UCAS, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Shanghai 200031, Peoples R China
推荐引用方式
GB/T 7714
Wu, Shuzhe,Kan, Meina,Shan, Shiguang,et al. Hierarchical Attention for Part-Aware Face Detection[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2019,127(6-7):560-578.
APA Wu, Shuzhe,Kan, Meina,Shan, Shiguang,&Chen, Xilin.(2019).Hierarchical Attention for Part-Aware Face Detection.INTERNATIONAL JOURNAL OF COMPUTER VISION,127(6-7),560-578.
MLA Wu, Shuzhe,et al."Hierarchical Attention for Part-Aware Face Detection".INTERNATIONAL JOURNAL OF COMPUTER VISION 127.6-7(2019):560-578.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Shuzhe]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
百度学术
百度学术中相似的文章
[Wu, Shuzhe]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
必应学术
必应学术中相似的文章
[Wu, Shuzhe]的文章
[Kan, Meina]的文章
[Shan, Shiguang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。