CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Camera-Invariant Meta-Learning Network for Single-Camera-Training Person Reidentification
Pei, Jiangbo1,2; Jiang, Zhuqing1,2; Men, Aidong1,2; Wang, Haiying1,2; Luo, Haiyong3; Wen, Shiping4
2025-06-15
发表期刊IEEE INTERNET OF THINGS JOURNAL
ISSN2327-4662
卷号12期号:12页码:22381-22392
摘要Single-camera-training person reidentification (SCT re-ID) aims to train a reidentification (re-ID) model using single-camera-training (SCT) datasets where each person appears in only one camera. The main challenge of SCT re-ID is to learn camera-invariant feature representations without cross-camera same-person (CCSP) data as supervision. Previous methods address it by assuming that the most similar person should be found in another camera. However, this assumption is not guaranteed to be correct. In this article, we propose a novel solution: the camera-invariant meta-learning network (CIMN) for SCT re-ID. CIMN operates under the premise that camera-invariant feature representations should remain robust despite changes in camera settings. To achieve this, we partition the training data into a meta-train set and a meta-test set based on camera IDs. We then conduct a cross-camera simulation (CCS) using a meta-learning strategy, aiming to enforce the feature representations learned from the meta-train set to be robust when applied to the meta-test set. We further introduce three specific loss functions to leverage potential identity relations between the meta-train set and the meta-test set. Through the CCS and the introduced loss functions, CIMN can extract feature representations that are both camera-invariant and identity-discriminative even in the absence of CCSP data. Our experimental results demonstrate that CIMN can extract feature representations that are both camera-invariant and identity-discriminative, even in the absence of CCSP data. our method achieves comparable performance with and without the use of CCSP data, and outperforms state-of-the-art methods on three SCT re-ID benchmarks.
关键词Cameras Training Metalearning Annotations Feature extraction Data models Identification of persons Costs Data mining Measurement Camera-invariant features meta-learning person reidentification (re-ID) single-camera-training (SCT)
DOI10.1109/JIOT.2025.3550976
收录类别SCI
语种英语
资助项目National Key Research and Development Program[2018YFB0505200] ; National Natural Science Funding[62002026]
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001506725100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/42294
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jiang, Zhuqing
作者单位1.Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
2.Beijing Univ Posts & Telecommun, Beijing Key Lab Network Syst & Network Culture, Beijing 100876, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
4.Univ Technol Sydney, Australian AI Inst, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
推荐引用方式
GB/T 7714
Pei, Jiangbo,Jiang, Zhuqing,Men, Aidong,et al. Camera-Invariant Meta-Learning Network for Single-Camera-Training Person Reidentification[J]. IEEE INTERNET OF THINGS JOURNAL,2025,12(12):22381-22392.
APA Pei, Jiangbo,Jiang, Zhuqing,Men, Aidong,Wang, Haiying,Luo, Haiyong,&Wen, Shiping.(2025).Camera-Invariant Meta-Learning Network for Single-Camera-Training Person Reidentification.IEEE INTERNET OF THINGS JOURNAL,12(12),22381-22392.
MLA Pei, Jiangbo,et al."Camera-Invariant Meta-Learning Network for Single-Camera-Training Person Reidentification".IEEE INTERNET OF THINGS JOURNAL 12.12(2025):22381-22392.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pei, Jiangbo]的文章
[Jiang, Zhuqing]的文章
[Men, Aidong]的文章
百度学术
百度学术中相似的文章
[Pei, Jiangbo]的文章
[Jiang, Zhuqing]的文章
[Men, Aidong]的文章
必应学术
必应学术中相似的文章
[Pei, Jiangbo]的文章
[Jiang, Zhuqing]的文章
[Men, Aidong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。