CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Towards early identification of online rumors based on long short-term memory networks
Liu, Yahui1; Jin, Xiaolong2,3; Shen, Huawei2,3
2019-07-01
发表期刊INFORMATION PROCESSING & MANAGEMENT
ISSN0306-4573
卷号56期号:4页码:1457-1467
摘要In the social media environment, rumors are constantly breeding and rapidly spreading, which has become a severe social problem, often leading to serious consequences (e.g., social panic and even chaos). Therefore, how to identify rumors quickly and accurately has become a key prerequisite for taking effective measures to curb the spread of rumors and reduce their influence. However, most existing studies employ machine learning based methods to carry out automatic rumor identification by extracting features of rumor contents, posters, and static spreading processes (e.g., follow-ups, thumb-ups, etc.) or by learning the presentation of forwarding contents. These studies fail to take into account the dynamic differences between the spreaders and diffusion structures of rumors and non-rumors. To fill this gap, this paper proposes Long Short-Term Memory (LSTM) network based models for identifying rumors by capturing the dynamic changes of forwarding contents, spreaders and diffusion structures of the whole (in the afterwards identification mode) or only the beginning part (in the halfway identification mode, i.e., early rumor identification) of the spreading process. Experiments conducted on a rumor and non-rumor dataset from Sina Weibo show that the proposed models perform better than existing baselines.
关键词Rumor identification Long short-term memory network Forwarding content Spreader Diffusion structure
DOI10.1016/j.ipm.2018.11.003
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFB1000902] ; National Key Research and Development Program of China[2017YFC0820404] ; National Natural Science Foundation of China[61772501] ; National Natural Science Foundation of China[61572473] ; National Natural Science Foundation of China[61572469] ; National Natural Science Foundation of China[91646120] ; Youth Innovation Promotion Association CAS ; CCF-Tencent RAGR[20160107] ; Shihezi university[ZZZC2017508]
WOS研究方向Computer Science ; Information Science & Library Science
WOS类目Computer Science, Information Systems ; Information Science & Library Science
WOS记录号WOS:000469907200018
出版者ELSEVIER SCI LTD
引用统计
被引频次:49[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4210
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Jin, Xiaolong
作者单位1.Shihezi Univ, Comp Network Ctr, Shihezi, Peoples R China
2.Chinese Acad Sci, ICT, Key Lab Network Data Sci & Technol, Beijing, Peoples R China
3.Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yahui,Jin, Xiaolong,Shen, Huawei. Towards early identification of online rumors based on long short-term memory networks[J]. INFORMATION PROCESSING & MANAGEMENT,2019,56(4):1457-1467.
APA Liu, Yahui,Jin, Xiaolong,&Shen, Huawei.(2019).Towards early identification of online rumors based on long short-term memory networks.INFORMATION PROCESSING & MANAGEMENT,56(4),1457-1467.
MLA Liu, Yahui,et al."Towards early identification of online rumors based on long short-term memory networks".INFORMATION PROCESSING & MANAGEMENT 56.4(2019):1457-1467.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yahui]的文章
[Jin, Xiaolong]的文章
[Shen, Huawei]的文章
百度学术
百度学术中相似的文章
[Liu, Yahui]的文章
[Jin, Xiaolong]的文章
[Shen, Huawei]的文章
必应学术
必应学术中相似的文章
[Liu, Yahui]的文章
[Jin, Xiaolong]的文章
[Shen, Huawei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。