Institute of Computing Technology, Chinese Academy IR
Beyond global fusion: A group-aware fusion approach for multi-view image clustering | |
Xue, Zhe1,2; Li, Guorong2,3; Wang, Shuhui4; Huang, Jun2,5; Zhang, Weigang6; Huang, Qingming2,3,4 | |
2019-08-01 | |
发表期刊 | INFORMATION SCIENCES |
ISSN | 0020-0255 |
卷号 | 493页码:176-191 |
摘要 | Images can be represented by multiple views and each view describes a specific visual appearance. Compared with single view learning method, multi-view methods can integrate information of different views to generate better clustering performance. Most of the existing multi-view methods assume that the importance of each view is the same to all the images. However, since visual appearance of images are different, the description abilities of different features vary with images. To solve this problem, a group-aware multi-view fusion approach is proposed in this paper. Specifically, images are partitioned into groups according to their visual appearance, and different fusion weights are assigned to different groups. We develop two paradigms under our group-aware fusion framework: pair-wise fusion and center-wise fusion. The former focuses on generating more accurate fusion results, while the latter achieves lower computational complexity. We design an optimization objective function which combines consensus and discrimination criterion to select more reliable and discriminative views for multi-view fusion. The clustering results and the fusion weights are learned by an iterative optimization algorithm. Experiments on four real-world image datasets indicate that our approach achieves promising image clustering performance over the existing methods. (C) 2019 Elsevier Inc. All rights reserved. |
关键词 | Multi-view learning Local fusion strategy Group-aware fusion Image clustering |
DOI | 10.1016/j.ins.2019.04.034 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[61802028] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[U1636214] ; National Natural Science Foundation of China[61472389] ; National Natural Science Foundation of China[61532006] ; National Natural Science Foundation of China[61877006] ; National Natural Science Foundation of China[61772083] ; Key Research Program of Frontier Sciences, CAS[QYZDJ-SSW-SYS013] ; Youth Innovation Promotion Association CAS ; Fundamental Research Funds for the Central University[2018RC44] ; Chinese Academy of Sciences ; Director Foundation of Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia[ITSM20180102] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000470052500011 |
出版者 | ELSEVIER SCIENCE INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/4204 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Li, Guorong |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China 2.Univ Chinese Acad Sci CAS, Sch Comp Sci & Technol, Beijing 100190, Peoples R China 3.Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing, Peoples R China 4.Chinese Acad Sci, Inst Comput Tech, Key Lab Intell Info Proc, Beijing 100080, Peoples R China 5.Anhui Univ Technol, Sch Comp Sci & Technol, Maanshan, Peoples R China 6.Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China |
推荐引用方式 GB/T 7714 | Xue, Zhe,Li, Guorong,Wang, Shuhui,et al. Beyond global fusion: A group-aware fusion approach for multi-view image clustering[J]. INFORMATION SCIENCES,2019,493:176-191. |
APA | Xue, Zhe,Li, Guorong,Wang, Shuhui,Huang, Jun,Zhang, Weigang,&Huang, Qingming.(2019).Beyond global fusion: A group-aware fusion approach for multi-view image clustering.INFORMATION SCIENCES,493,176-191. |
MLA | Xue, Zhe,et al."Beyond global fusion: A group-aware fusion approach for multi-view image clustering".INFORMATION SCIENCES 493(2019):176-191. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论