CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Self-supervised Learning for Electroencephalogram: A Systematic Survey
Weng, Weining1,2; Gu, Yang1,2; Guo, Shuai1,2; Ma, Yuan1,2; Yang, Zhaohua1,2; Liu, Yuchen1,2; Chen, Yiqiang1,2
2025-12-01
发表期刊ACM COMPUTING SURVEYS
ISSN0360-0300
卷号57期号:12页码:38
摘要Electroencephalography (EEG) is a non-invasive technique to record bioelectrical signals. Integrating supervised deep learning techniques with EEG signals has recently facilitated automatic analysis across diverse EEG-based tasks. However, the label issues of EEG signals have constrained the development of EEG-based deep models. Obtaining EEG annotations is difficult and requires domain experts to guide collection and labeling, and the variability of EEG signals among different subjects causes significant label shifts. To solve the above challenges, self-supervised learning (SSL) has been proposed to extract representations from unlabeled samples through well-designed pretext tasks. This article concentrates on integrating SSL frameworks with temporal EEG signals to achieve efficient representations and proposes a systematic survey of the SSL for EEG signals. In this article, (1) We introduce the concept and theory of self-supervised learning and typical SSL frameworks. (2) We provide a comprehensive survey of SSL for EEG analysis, including taxonomy, methodology, and technical details of the existing EEG-based SSL frameworks, and discuss the differences between these methods. (3) We investigate the adaptation of the SSL approach to various downstream tasks, including the task description and related benchmark datasets, and further explore its application in largescale pre-trained foundation models for EEG signals. (4) Finally, we discuss the potential directions for future SSL-EEG research.
关键词Self-supervised learning electroencephalogram contrastive learning representation learning
DOI10.1145/3736574
收录类别SCI
语种英语
资助项目Beijing Municipal Science and Technology Commission[Z221100002722009] ; Improvement Project of Chinese Academy of Sciences ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:001542065100005
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41989
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gu, Yang
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Weng, Weining,Gu, Yang,Guo, Shuai,et al. Self-supervised Learning for Electroencephalogram: A Systematic Survey[J]. ACM COMPUTING SURVEYS,2025,57(12):38.
APA Weng, Weining.,Gu, Yang.,Guo, Shuai.,Ma, Yuan.,Yang, Zhaohua.,...&Chen, Yiqiang.(2025).Self-supervised Learning for Electroencephalogram: A Systematic Survey.ACM COMPUTING SURVEYS,57(12),38.
MLA Weng, Weining,et al."Self-supervised Learning for Electroencephalogram: A Systematic Survey".ACM COMPUTING SURVEYS 57.12(2025):38.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Weng, Weining]的文章
[Gu, Yang]的文章
[Guo, Shuai]的文章
百度学术
百度学术中相似的文章
[Weng, Weining]的文章
[Gu, Yang]的文章
[Guo, Shuai]的文章
必应学术
必应学术中相似的文章
[Weng, Weining]的文章
[Gu, Yang]的文章
[Guo, Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。