CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Instance-level object retrieval via deep region CNN
Mei, Shuhuan1,2; Min, Weiqing2; Duan, Hua1; Jiang, Shuqiang2,3
2019-05-01
发表期刊MULTIMEDIA TOOLS AND APPLICATIONS
ISSN1380-7501
卷号78期号:10页码:13247-13261
摘要Instance retrieval is a fundamental problem in the multimedia field for its various applications. Since the relevancy is defined at the instance level, it is more challenging comparing to traditional image retrieval methods. Recent advances show that Convolutional Neural Networks (CNNs) offer an attractive method for image feature representations. However, the CNN method extracts features from the whole image, thus the extracted features contain a large amount of background noisy information, leading to poor retrieval performance. To solve the problem, this paper proposed a deep region CNN method with object detection for instance-level object retrieval, which has two phases, i.e., offline Faster R-CNN training and online instance retrieval. First, we train a Faster R-CNN model to better locate the region of the objects. Second, we extract the CNN features from the detected object image region and then retrieve relevant images based on the visual similarity of these features. Furthermore, we utilized three different strategies for feature fusing based on the detected object region candidates from Faster R-CNN. We conduct the experiment on a large dataset: INSTRE with 23,070 object images and additional one million distractor images. Qualitative and quantitative evaluation results have demonstrated the advantage of our proposed method. In addition, we conducted extensive experiments on the Oxford dataset and the experimental results further validated the effectiveness of our proposed method.
关键词Faster R-CNN Deep learning Instance-level object retrieval Instre
DOI10.1007/s11042-018-6427-1
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[61532018] ; National Natural Science Foundation of China[61322212] ; National Natural Science Foundation of China[61602437] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61472229] ; National Natural Science Foundation of China[61202152] ; Beijing Municipal Commission of Science and Technology[D161100001816001] ; Beijing Natural Science Foundation[4174106] ; Lenovo Outstanding Young Scientists Program ; National Program for Special Support of Eminent Professionals ; National Program for Support of Top-notch Young Professionals ; China Postdoctoral Science Foundation[2016M590135] ; China Postdoctoral Science Foundation[2017T100110] ; Science and Technology Development Fund of Shandong Province of China[2016ZDJS02A11] ; Science and Technology Development Fund of Shandong Province of China[ZR2017MF027] ; Taishan Scholar Climbing Program of Shandong Province ; SDUST Research Fund[2015TDJH102]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000471654900028
出版者SPRINGER
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/4184
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Duan, Hua
作者单位1.Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Mei, Shuhuan,Min, Weiqing,Duan, Hua,et al. Instance-level object retrieval via deep region CNN[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2019,78(10):13247-13261.
APA Mei, Shuhuan,Min, Weiqing,Duan, Hua,&Jiang, Shuqiang.(2019).Instance-level object retrieval via deep region CNN.MULTIMEDIA TOOLS AND APPLICATIONS,78(10),13247-13261.
MLA Mei, Shuhuan,et al."Instance-level object retrieval via deep region CNN".MULTIMEDIA TOOLS AND APPLICATIONS 78.10(2019):13247-13261.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mei, Shuhuan]的文章
[Min, Weiqing]的文章
[Duan, Hua]的文章
百度学术
百度学术中相似的文章
[Mei, Shuhuan]的文章
[Min, Weiqing]的文章
[Duan, Hua]的文章
必应学术
必应学术中相似的文章
[Mei, Shuhuan]的文章
[Min, Weiqing]的文章
[Duan, Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。