CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ID-centric Pre-training for Recommendation
Wu, Yiqing1,2; Xie, Ruobing3; Zhang, Zhao1; Zhang, Xu3; Zhuang, Fuzhen4,5; Lin, Leyu3; Kang, Zhanhui6; An, Zhulin1; Xu, Yongjun1
2025-09-01
发表期刊ACM TRANSACTIONS ON INFORMATION SYSTEMS
ISSN1046-8188
卷号43期号:5页码:29
摘要Classical sequential recommendation models generally adopt ID embeddings to store knowledge learned from user historical behaviors and represent items. However, these unique IDs are challenging to be transferred to new domains. With the thriving of pre-trained language model (PLM), some pioneer works adopt PLM for pre-trained recommendation, where modality information is considered universal across domains via PLM. Unfortunately, the behavioral information in ID embeddings is verified to currently dominate in recommendation compared to modality information and thus limits these models' performance. In this work, we propose a novel ID-centric recommendation pre-training paradigm (IDP), which directly transfers informative ID embeddings learned in pre-training domains to item representations in new domains. Specifically, in pre-training stage, besides the ID-based sequential recommendation model, we also build a Cross-domain ID-matcher (CDIM) learned by both behavioral and modality information. In the tuning stage, modality information of new domain items is regarded as a cross-domain bridge built by CDIM. They first adopted to retrieve behaviorally and embeddings are directly adopted to generate downstream new items' embeddings. Through extensive experiments on real-world datasets, we demonstrate that our proposed model significantly outperforms all baselines.
关键词Pre-trained Recommendation ID-based Recommendation Multi-domain Recommendation
DOI10.1145/3735128
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2024YFF0729003] ; Young Elite Scientists Sponsorship Program by CAST[2023QNRC001] ; National Natural Science Foundation of China[62206266] ; National Natural Science Foundation of China[62176014] ; Fundamental Research Funds for the Central Universities
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:001552823100001
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41783
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Zhao
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Tencent, Beijing, Peoples R China
4.Beihang Univ, Inst Artificial Intelligence, Beijing, Peoples R China
5.Zhongguancun Lab, Beijing, Peoples R China
6.Tencent, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wu, Yiqing,Xie, Ruobing,Zhang, Zhao,et al. ID-centric Pre-training for Recommendation[J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS,2025,43(5):29.
APA Wu, Yiqing.,Xie, Ruobing.,Zhang, Zhao.,Zhang, Xu.,Zhuang, Fuzhen.,...&Xu, Yongjun.(2025).ID-centric Pre-training for Recommendation.ACM TRANSACTIONS ON INFORMATION SYSTEMS,43(5),29.
MLA Wu, Yiqing,et al."ID-centric Pre-training for Recommendation".ACM TRANSACTIONS ON INFORMATION SYSTEMS 43.5(2025):29.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Yiqing]的文章
[Xie, Ruobing]的文章
[Zhang, Zhao]的文章
百度学术
百度学术中相似的文章
[Wu, Yiqing]的文章
[Xie, Ruobing]的文章
[Zhang, Zhao]的文章
必应学术
必应学术中相似的文章
[Wu, Yiqing]的文章
[Xie, Ruobing]的文章
[Zhang, Zhao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。