CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
CL-DGCN: contrastive learning based deeper graph convolutional network for traffic flow data prediction
Zhang, Enwei1; Lv, Zhiqiang1,2; Cheng, Zesheng1; Ke, Jintao3
2025-11-01
发表期刊TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
ISSN1366-5545
卷号203页码:18
摘要Accurate and efficient traffic prediction helps to establish multimodal transportation systems and improve the travelling experience in daily life. Currently the mainstream traffic prediction methods are implemented based on Graph Convolutional Network (GCN), superimposing GCN layers can obtain better prediction results, but excessive superimposition will lead to the oversmooth problem, this paper proposes CL-DGCN to overcome this problem, which obtains the representations of the features through contrastive learning, and uses the improved message aggregation function to overcome the over-smooth problem. In this study, the CL-DGCN model is experimented on four domestic and international open-source, real datasets (PEMSBAY, METRLA, BEIJING and SZ-TAXI), and CL-DGCN achieves optimal or sub-optimal results in most time-step predictions, and reduces the composite error by more than 10 % compared to the baseline model, which well illustrates that the CL-DGCN model possesses more accurate prediction results.
关键词Multimodal transportation Traffic flow prediction Graph convolutional network Hyperaggregation function
DOI10.1016/j.tre.2025.104345
收录类别SCI
语种英语
资助项目Key Technology Research and Development Program of Shandong[2025CXGC010108] ; Shandong Province Natural Science Foundation[ZR2024MG034] ; Shandong Province Natural Science Foundation[ZR2024MF144] ; Shandong Province Natural Science Foundation[ZR2024MF142]
WOS研究方向Business & Economics ; Engineering ; Operations Research & Management Science ; Transportation
WOS类目Economics ; Engineering, Civil ; Operations Research & Management Science ; Transportation ; Transportation Science & Technology
WOS记录号WOS:001550879900002
出版者PERGAMON-ELSEVIER SCIENCE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41771
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Cheng, Zesheng
作者单位1.Qingdao Univ, Coll Comp Sci & Technol, Qingdao, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Univ Hong Kong, Dept Civil Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Enwei,Lv, Zhiqiang,Cheng, Zesheng,et al. CL-DGCN: contrastive learning based deeper graph convolutional network for traffic flow data prediction[J]. TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW,2025,203:18.
APA Zhang, Enwei,Lv, Zhiqiang,Cheng, Zesheng,&Ke, Jintao.(2025).CL-DGCN: contrastive learning based deeper graph convolutional network for traffic flow data prediction.TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW,203,18.
MLA Zhang, Enwei,et al."CL-DGCN: contrastive learning based deeper graph convolutional network for traffic flow data prediction".TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW 203(2025):18.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Enwei]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
百度学术
百度学术中相似的文章
[Zhang, Enwei]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
必应学术
必应学术中相似的文章
[Zhang, Enwei]的文章
[Lv, Zhiqiang]的文章
[Cheng, Zesheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。