CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
A Generic Layer Pruning Method for Signal Modulation Recognition Deep Learning Models
Lu, Yao1,2; Zhu, Yutao1,2; Li, Yuqi3; Xu, Dongwei1,2; Lin, Yun4; Xuan, Qi2,5; Yang, Xiaoniu
2025-08-01
发表期刊IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING
ISSN2332-7731
卷号11期号:4页码:2123-2134
摘要With the successful application of deep learning in communications systems, deep neural networks are becoming the preferred method for Automatic Modulation Recognition (AMR). Although these AMR models yield impressive results, they often come with high computational complexity and large model sizes, which hinders their practical deployment in communication systems. To address this challenge, we propose a novel layer pruning method, PSR. Specifically, we decompose the AMR model into several consecutive blocks, each containing consecutive layers with similar semantics. Then, we identify layers that need to be preserved within each block based on their contribution. Finally, we reassemble the pruned blocks and fine-tune the compact model. Extensive experiments on five datasets demonstrate the efficiency and effectiveness of PSR over a variety of state-of-the-art baselines, including layer pruning and channel pruning methods.
关键词Computational modeling Deep learning Modulation Training Pattern classification Computational complexity Vectors Semantics Perturbation methods Indexes Automatic modulation recognition layer pruning deep learning edge devices
DOI10.1109/TCCN.2024.3520958
收录类别SCI
语种英语
资助项目Key R&D Program of Zhejiang[2022C01018] ; National Natural Science Foundation of China[U21B2001] ; National Natural Science Foundation of China[61973273]
WOS研究方向Telecommunications
WOS类目Telecommunications
WOS记录号WOS:001547513900012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41757
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xuan, Qi
作者单位1.Zhejiang Univ Technol, Inst Cyberspace Secur, Coll Informat Engn, Hangzhou 310056, Peoples R China
2.Zhejiang Univ Technol, Binjiang Inst Artificial Intelligence, Hangzhou 310056, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
4.Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
5.Zhejiang Univ Technol, Inst Cyberspace Secur, Coll Informat Engn, Hangzhou 310023, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yao,Zhu, Yutao,Li, Yuqi,et al. A Generic Layer Pruning Method for Signal Modulation Recognition Deep Learning Models[J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING,2025,11(4):2123-2134.
APA Lu, Yao.,Zhu, Yutao.,Li, Yuqi.,Xu, Dongwei.,Lin, Yun.,...&Yang, Xiaoniu.(2025).A Generic Layer Pruning Method for Signal Modulation Recognition Deep Learning Models.IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING,11(4),2123-2134.
MLA Lu, Yao,et al."A Generic Layer Pruning Method for Signal Modulation Recognition Deep Learning Models".IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 11.4(2025):2123-2134.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Yao]的文章
[Zhu, Yutao]的文章
[Li, Yuqi]的文章
百度学术
百度学术中相似的文章
[Lu, Yao]的文章
[Zhu, Yutao]的文章
[Li, Yuqi]的文章
必应学术
必应学术中相似的文章
[Lu, Yao]的文章
[Zhu, Yutao]的文章
[Li, Yuqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。