Institute of Computing Technology, Chinese Academy IR
| STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond | |
| Chang, Zheng1,2,3,4; Zhang, Xinfeng5; Wang, Shanshe4,6; Ma, Siwei4; Gao, Wen3,7 | |
| 2025-09-01 | |
| 发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
![]() |
| ISSN | 0162-8828 |
| 卷号 | 47期号:9页码:7916-7929 |
| 摘要 | Video prediction aims to predict future frames by modeling the complex spatiotemporal dynamics in videos. However, most existing methods only model the temporal information and the spatial information for videos in an independent manner but have not fully explored the correlations between both terms. In this paper, we propose a SpatioTemporal-Aware Unit (STAU) for video prediction and beyond by exploring the significant spatiotemporal correlations in videos. On the one hand, the motion-aware attention weights are learned from the spatial states to help aggregate the temporal states in the temporal domain. On the other hand, the appearance-aware attention weights are learned from the temporal states to help aggregate the spatial states in the spatial domain. In this way, the temporal information and the spatial information can be greatly aware of each other in both domains, during which, the spatiotemporal receptive field can also be greatly broadened for more reliable spatiotemporal modeling. Experiments are not only conducted on video prediction tasks (deterministic and stochastic), but also another task beyond video prediction, the early action recognition task. Experimental results show that the proposed STAU can achieve satisfactory performance on all tasks compared with other methods. |
| 关键词 | Spatiotemporal phenomena Correlation Predictive models Stochastic processes Hands Dynamics Visualization Aggregates Training Reliability Spatiotemporal-aware spatiotemporal correlations attention mechanism video prediction and beyond |
| DOI | 10.1109/TPAMI.2025.3572735 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | Funds for International Cooperation and Exchange of the National Natural Science Foundation of China[62461160310] ; Key Program of the National Natural Science Foundation of China[62431011] ; National Natural Science Foundation of China (NSFC)[62025101] ; PCL-CMCC Foundation for science and innovation[2024ZY1C0040] |
| WOS研究方向 | Computer Science ; Engineering |
| WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
| WOS记录号 | WOS:001547756300027 |
| 出版者 | IEEE COMPUTER SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/41753 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Zhang, Xinfeng |
| 作者单位 | 1.Huawei Technol, Shenzhen 518129, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Peking Univ, Natl Engn Res Ctr Visual Technol, Beijing 100871, Peoples R China 5.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China 6.Peking Univ, Informat Technol R&D Innovat Ctr, Shaoxing 312000, Peoples R China 7.Natl Engn Res Ctr Visual Technol, Beijing 100871, Peoples R China |
| 推荐引用方式 GB/T 7714 | Chang, Zheng,Zhang, Xinfeng,Wang, Shanshe,et al. STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2025,47(9):7916-7929. |
| APA | Chang, Zheng,Zhang, Xinfeng,Wang, Shanshe,Ma, Siwei,&Gao, Wen.(2025).STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,47(9),7916-7929. |
| MLA | Chang, Zheng,et al."STAU: A SpatioTemporal-Aware Unit for Video Prediction and Beyond".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 47.9(2025):7916-7929. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论