CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline
Shang, Linzhi1; Min, Chen2; Wang, Juan3; Xiao, Liang1; Zhao, Dawei1; Nie, Yiming1
2025-07-31
发表期刊REMOTE SENSING
卷号17期号:15页码:21
摘要Vehicle re-identification (Re-ID) is a critical computer vision task that aims to match the same vehicle across spatially distributed cameras, especially in the context of remote sensing imagery. While prior research has primarily focused on Re-ID using remote sensing images captured from similar, typically elevated viewpoints, these settings do not fully reflect complex aerial-ground collaborative remote sensing scenarios. In this work, we introduce a novel and challenging task: aerial-ground cross-view vehicle Re-ID, which involves retrieving vehicles in ground-view image galleries using query images captured from aerial (top-down) perspectives. This task is increasingly relevant due to the integration of drone-based surveillance and ground-level monitoring in multi-source remote sensing systems, yet it poses substantial challenges due to significant appearance variations between aerial and ground views. To support this task, we present AGID (Aerial-Ground Vehicle Re-Identification), the first benchmark dataset specifically designed for aerial-ground cross-view vehicle Re-ID. AGID comprises 20,785 remote sensing images of 834 vehicle identities, collected using drones and fixed ground cameras. We further propose a novel method, Enhanced Self-Correlation Feature Computation (ESFC), which enhances spatial relationships between semantically similar regions and incorporates shape information to improve feature discrimination. Extensive experiments on the AGID dataset and three widely used vehicle Re-ID benchmarks validate the effectiveness of our method, which achieves a Rank-1 accuracy of 69.0% on AGID, surpassing state-of-the-art approaches by 2.1%.
关键词aerial-ground cross-view remote sensing vehicle re-identification
DOI10.3390/rs17152653
收录类别SCI
语种英语
资助项目Defense Innovation Institution
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001549662100001
出版者MDPI
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41749
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Dawei
作者单位1.Def Innovat Inst, Beijing 100071, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Shang, Linzhi,Min, Chen,Wang, Juan,et al. Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline[J]. REMOTE SENSING,2025,17(15):21.
APA Shang, Linzhi,Min, Chen,Wang, Juan,Xiao, Liang,Zhao, Dawei,&Nie, Yiming.(2025).Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline.REMOTE SENSING,17(15),21.
MLA Shang, Linzhi,et al."Aerial-Ground Cross-View Vehicle Re-Identification: A Benchmark Dataset and Baseline".REMOTE SENSING 17.15(2025):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shang, Linzhi]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
百度学术
百度学术中相似的文章
[Shang, Linzhi]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
必应学术
必应学术中相似的文章
[Shang, Linzhi]的文章
[Min, Chen]的文章
[Wang, Juan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。