Institute of Computing Technology, Chinese Academy IR
| 3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network | |
| Li, Lanqi1; Luo, Rui2; Chen, Xiaolu2; Wei, Huapeng3; Zhang, Wenming2; Lu, Qiang2; Dong, Weiming4; Lu, Jianmei6; Zhang, Bing2; Tang, Fan5 | |
| 2025-09-03 | |
| 发表期刊 | JOURNAL OF CHEMICAL INFORMATION AND MODELING
![]() |
| ISSN | 1549-9596 |
| 页码 | 13 |
| 摘要 | Existing methods for adsorption energy prediction primarily focus on individual molecules or static molecular pairs, lacking the capabilities to model the diverse spatial configurations found in complex solution systems. While traditional data sets are static, dynamic systems explore a vast conformational space over time. This paper introduces the Multi-Temporal Solution System (MTSS) data set containing 500,000 temporally resolved configurations (3D atomic coordinates + adsorption energy labels) across five solvents. To address solution-level interactions (solute-solvent/solvent-solvent), we propose SEP-Net-a dual-channel graph network integrating rotational-invariant geometric learning and molecular SMILES embeddings. Experimental validation shows SEP-Net achieves an MAE of 211.02 kJ/mol on known solvents and 507.37 kJ/mol on unseen solvents, surpassing MLP (3827.33 vs 507.37 kJ/mol on ACE solvent). This work establishes new benchmarks in system-level adsorption prediction through geometric deep learning. |
| DOI | 10.1021/acs.jcim.5c00645 |
| 收录类别 | SCI |
| 语种 | 英语 |
| 资助项目 | National Natural Science Foundation of China[62175063] ; National Natural Science Foundation of China[22442034] ; National Natural Science Foundation of China[52436009] ; National Natural Science Foundation of China |
| WOS研究方向 | Pharmacology & Pharmacy ; Chemistry ; Computer Science |
| WOS类目 | Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications |
| WOS记录号 | WOS:001564352500001 |
| 出版者 | AMER CHEMICAL SOC |
| 引用统计 | |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://119.78.100.204/handle/2XEOYT63/41747 |
| 专题 | 中国科学院计算技术研究所期刊论文_英文 |
| 通讯作者 | Lu, Jianmei; Zhang, Bing; Tang, Fan |
| 作者单位 | 1.Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450001, Peoples R China 2.North China Elect Power Univ, Sch New Energy, Beijing 102206, Peoples R China 3.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Jilin, Peoples R China 4.Chinese Acad Sci, Inst Automat, MAIS, Beijing 100864, Peoples R China 5.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China 6.Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China |
| 推荐引用方式 GB/T 7714 | Li, Lanqi,Luo, Rui,Chen, Xiaolu,et al. 3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2025:13. |
| APA | Li, Lanqi.,Luo, Rui.,Chen, Xiaolu.,Wei, Huapeng.,Zhang, Wenming.,...&Tang, Fan.(2025).3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network.JOURNAL OF CHEMICAL INFORMATION AND MODELING,13. |
| MLA | Li, Lanqi,et al."3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network".JOURNAL OF CHEMICAL INFORMATION AND MODELING (2025):13. |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论