CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network
Li, Lanqi1; Luo, Rui2; Chen, Xiaolu2; Wei, Huapeng3; Zhang, Wenming2; Lu, Qiang2; Dong, Weiming4; Lu, Jianmei6; Zhang, Bing2; Tang, Fan5
2025-09-03
发表期刊JOURNAL OF CHEMICAL INFORMATION AND MODELING
ISSN1549-9596
页码13
摘要Existing methods for adsorption energy prediction primarily focus on individual molecules or static molecular pairs, lacking the capabilities to model the diverse spatial configurations found in complex solution systems. While traditional data sets are static, dynamic systems explore a vast conformational space over time. This paper introduces the Multi-Temporal Solution System (MTSS) data set containing 500,000 temporally resolved configurations (3D atomic coordinates + adsorption energy labels) across five solvents. To address solution-level interactions (solute-solvent/solvent-solvent), we propose SEP-Net-a dual-channel graph network integrating rotational-invariant geometric learning and molecular SMILES embeddings. Experimental validation shows SEP-Net achieves an MAE of 211.02 kJ/mol on known solvents and 507.37 kJ/mol on unseen solvents, surpassing MLP (3827.33 vs 507.37 kJ/mol on ACE solvent). This work establishes new benchmarks in system-level adsorption prediction through geometric deep learning.
DOI10.1021/acs.jcim.5c00645
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62175063] ; National Natural Science Foundation of China[22442034] ; National Natural Science Foundation of China[52436009] ; National Natural Science Foundation of China
WOS研究方向Pharmacology & Pharmacy ; Chemistry ; Computer Science
WOS类目Chemistry, Medicinal ; Chemistry, Multidisciplinary ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:001564352500001
出版者AMER CHEMICAL SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41747
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Lu, Jianmei; Zhang, Bing; Tang, Fan
作者单位1.Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450001, Peoples R China
2.North China Elect Power Univ, Sch New Energy, Beijing 102206, Peoples R China
3.Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Jilin, Peoples R China
4.Chinese Acad Sci, Inst Automat, MAIS, Beijing 100864, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
6.Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
推荐引用方式
GB/T 7714
Li, Lanqi,Luo, Rui,Chen, Xiaolu,et al. 3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network[J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING,2025:13.
APA Li, Lanqi.,Luo, Rui.,Chen, Xiaolu.,Wei, Huapeng.,Zhang, Wenming.,...&Tang, Fan.(2025).3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network.JOURNAL OF CHEMICAL INFORMATION AND MODELING,13.
MLA Li, Lanqi,et al."3D Spatial Learning for Adsorption Energy Prediction in Multi-Temporal Solution Systems: The MTSS Data Set and a GCN-Based Network".JOURNAL OF CHEMICAL INFORMATION AND MODELING (2025):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Lanqi]的文章
[Luo, Rui]的文章
[Chen, Xiaolu]的文章
百度学术
百度学术中相似的文章
[Li, Lanqi]的文章
[Luo, Rui]的文章
[Chen, Xiaolu]的文章
必应学术
必应学术中相似的文章
[Li, Lanqi]的文章
[Luo, Rui]的文章
[Chen, Xiaolu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。