CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
PGT-NeuS: Progressive-Growing Tri-Plane Representation for Neural Surface Reconstruction
Xiang, Xue-Kun1,2; Yuan, Yu-Jie1,2; Hu, Wen-Bo3; Liu, Yu-Tao1,2; Ma, Yue-Wen3; Gao, Lin1,2
2025-10-01
发表期刊IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
ISSN1077-2626
卷号31期号:10页码:9213-9224
摘要3D reconstruction from multi-view images is a long-standing problem in computer graphic. Neural 3D reconstruction, especially NeuS and its variants, has improved reconstruction quality compared to traditional methods. However, it is still a challenge for these methods to reconstruct fine-grained geometric details since the spherical harmonic positional encoding lacks the ability to express high-frequency signals. In this paper, we propose a multi-resolution tri-plane feature encoding that leverages the detail reconstruction capabilities of high-resolution tri-plane while using the smoothness of low-resolution tri-plane to suppress high-frequency artifacts. Additionally, a progressive training strategy is introduced, gradually merging scene details from coarse to fine granularity, enhancing reconstruction quality while maintaining training stability and reducing difficulty. Furthermore, to address reconstruction challenges arising from sparse viewpoints and inconsistent lighting in image datasets, we introduce normal priors as supervision and propose consistency verification for multi-view normal priors, which assesses the accuracy of normal priors and effectively supervise the reconstructed surfaces. Moreover, we propose a perturbing and fine-tuning strategy on regions of unreliable normal priors to further improve the quality of geometric surface reconstruction.
关键词Image reconstruction Surface reconstruction Neural radiance field Encoding Training Rendering (computer graphics) Accuracy Three-dimensional displays Image color analysis Refining surface reconstruction progressive learning normal priors verification
DOI10.1109/TVCG.2025.3590394
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62322210] ; Beijing Municipal Science and Technology Commission[Z231100005923031] ; Innovation Funding of ICT, CAS[E461020]
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001566979000032
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41717
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Gao, Lin
作者单位1.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
3.ByteDance Pico, Beijing 100098, Peoples R China
推荐引用方式
GB/T 7714
Xiang, Xue-Kun,Yuan, Yu-Jie,Hu, Wen-Bo,et al. PGT-NeuS: Progressive-Growing Tri-Plane Representation for Neural Surface Reconstruction[J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,2025,31(10):9213-9224.
APA Xiang, Xue-Kun,Yuan, Yu-Jie,Hu, Wen-Bo,Liu, Yu-Tao,Ma, Yue-Wen,&Gao, Lin.(2025).PGT-NeuS: Progressive-Growing Tri-Plane Representation for Neural Surface Reconstruction.IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,31(10),9213-9224.
MLA Xiang, Xue-Kun,et al."PGT-NeuS: Progressive-Growing Tri-Plane Representation for Neural Surface Reconstruction".IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 31.10(2025):9213-9224.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiang, Xue-Kun]的文章
[Yuan, Yu-Jie]的文章
[Hu, Wen-Bo]的文章
百度学术
百度学术中相似的文章
[Xiang, Xue-Kun]的文章
[Yuan, Yu-Jie]的文章
[Hu, Wen-Bo]的文章
必应学术
必应学术中相似的文章
[Xiang, Xue-Kun]的文章
[Yuan, Yu-Jie]的文章
[Hu, Wen-Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。