CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Benchmarking Radiology Report Generation From Noisy Free-Texts
Yuan, Yujian1; Zheng, Yanting2; Qu, Liangqiong3
2025-10-01
发表期刊IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
ISSN2168-2194
卷号29期号:10页码:7549-7558
摘要Automatic radiology report generation can enhance diagnostic efficiency and accuracy. However, clean open-source imaging scan-report pairs are limited in scale and variety. Moreover, the vast amount of radiological texts available online is often too noisy to be directly employed. To address this challenge, we introduce a novel task called Noisy Report Refinement (NRR), which generates radiology reports from noisy free-texts. To achieve this, we propose a report refinement pipeline that leverages large language models (LLMs) enhanced with guided self-critique and report selection strategies. To address the inability of existing radiology report generation metrics in measuring cleanliness, radiological usefulness, and factual correctness across various modalities of reports in NRR task, we introduce a new benchmark, NRRBench, for NRR evaluation. This benchmark includes two online-sourced datasets and four clinically explainable LLM-based metrics: two metrics evaluate the matching rate of radiology entities and modality-specific template attributes respectively, one metric assesses report cleanliness, and a combined metric evaluates overall NRR performance. Experiments demonstrate that guided self-critique and report selection strategies significantly improve the quality of refined reports. Additionally, our proposed metrics show a much higher correlation with noisy rate and error count of reports than radiology report generation metrics in evaluating NRR.
关键词Noise measurement Radiology Measurement Benchmark testing Pipelines Large language models Biomedical imaging Training Bioinformatics Text processing Benchmark large language model (LLM) natural language processing radiology report generation
DOI10.1109/JBHI.2025.3569428
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62306253] ; Guangdong Natural Science Fund-General Programme[2024A1515010233] ; Guangzhou Municipal Science and Technology Project[2023A04J1860]
WOS研究方向Computer Science ; Mathematical & Computational Biology ; Medical Informatics
WOS类目Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Medical Informatics
WOS记录号WOS:001590940200009
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41659
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Qu, Liangqiong
作者单位1.Univ Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Guangzhou Univ Chinese Med, Affiliated Hosp 1, Guangzhou 510405, Peoples R China
3.Univ Hong Kong, Hong Kong 999077, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Yujian,Zheng, Yanting,Qu, Liangqiong. Benchmarking Radiology Report Generation From Noisy Free-Texts[J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,2025,29(10):7549-7558.
APA Yuan, Yujian,Zheng, Yanting,&Qu, Liangqiong.(2025).Benchmarking Radiology Report Generation From Noisy Free-Texts.IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS,29(10),7549-7558.
MLA Yuan, Yujian,et al."Benchmarking Radiology Report Generation From Noisy Free-Texts".IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 29.10(2025):7549-7558.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Yujian]的文章
[Zheng, Yanting]的文章
[Qu, Liangqiong]的文章
百度学术
百度学术中相似的文章
[Yuan, Yujian]的文章
[Zheng, Yanting]的文章
[Qu, Liangqiong]的文章
必应学术
必应学术中相似的文章
[Yuan, Yujian]的文章
[Zheng, Yanting]的文章
[Qu, Liangqiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。