CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
NNQS-AFQMC: Neural Network Quantum States Enhanced Fermionic Quantum Monte Carlo
Xiao, Zhi-Yu1; Kan, Bowen2,3; Ma, Huan4; Zhao, Bowen4; Shang, Honghui4
2025-10-14
发表期刊JOURNAL OF CHEMICAL THEORY AND COMPUTATION
ISSN1549-9618
卷号21期号:19页码:9587-9600
摘要We introduce an efficient approach to implement neural network quantum states (NNQS) as trial wave functions in auxiliary-field quantum Monte Carlo (AFQMC). NNQS are a recently developed class of variational ansatze capable of flexibly representing many-body wave functions, though they often incur a high computational cost during optimization. AFQMC, on the other hand, is a powerful stochastic projector approach for ground-state calculations, but it normally requires an approximate constraint via a trial wave function or trial density matrix, whose quality affects the accuracy. Recently, it has been shown (Xiao et al., arXiv2505.18519) that a broad class of highly correlated wave functions can be integrated into AFQMC through stochastic sampling techniques. In this work, we apply this approach and present a direct integration of NNQS with AFQMC, allowing NNQS to serve as high-quality trial wave functions for AFQMC with manageable computational cost. We test the NNQS-AFQMC method on the challenging nitrogen molecule (N2) at stretched geometries. Our results demonstrate that AFQMC with an NNQS trial wave function can attain near-exact total energies, highlighting the potential of AFQMC with NNQS to overcome longstanding challenges in strongly correlated electronic structure calculations. We also outline future research directions for improving this promising methodology.
DOI10.1021/acs.jctc.5c01138
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[T2222026] ; National Natural Science Foundation of China ; Supercomputing Center of the USTC ; Institute of Physics, Chinese Academy of Sciences
WOS研究方向Chemistry ; Physics
WOS类目Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号WOS:001585274300001
出版者AMER CHEMICAL SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41651
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xiao, Zhi-Yu; Shang, Honghui
作者单位1.Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
4.Univ Sci & Technol China, State Key Lab Precis & Intelligent Chem, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Xiao, Zhi-Yu,Kan, Bowen,Ma, Huan,et al. NNQS-AFQMC: Neural Network Quantum States Enhanced Fermionic Quantum Monte Carlo[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2025,21(19):9587-9600.
APA Xiao, Zhi-Yu,Kan, Bowen,Ma, Huan,Zhao, Bowen,&Shang, Honghui.(2025).NNQS-AFQMC: Neural Network Quantum States Enhanced Fermionic Quantum Monte Carlo.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,21(19),9587-9600.
MLA Xiao, Zhi-Yu,et al."NNQS-AFQMC: Neural Network Quantum States Enhanced Fermionic Quantum Monte Carlo".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 21.19(2025):9587-9600.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiao, Zhi-Yu]的文章
[Kan, Bowen]的文章
[Ma, Huan]的文章
百度学术
百度学术中相似的文章
[Xiao, Zhi-Yu]的文章
[Kan, Bowen]的文章
[Ma, Huan]的文章
必应学术
必应学术中相似的文章
[Xiao, Zhi-Yu]的文章
[Kan, Bowen]的文章
[Ma, Huan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。