CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
LINS: A general medical Q&A framework for enhancing the quality and credibility of LLM-generated responses
Wang, Sheng1,2; Zhao, Fangyuan1,2; Bu, Dechao1,2; Lu, Yunwei3; Gong, Ming4; Liu, Hongjie1,5; Yang, Zhaohui1,2; Zeng, Xiaoxi6,7; Yuan, Zhiyuan8,9,10; Wan, Baoping1; Sun, Jingbo1,2; Wu, Yang1; Zhao, Lianhe1; Wan, Xirun11; Huang, Wei12; Wang, Tao12; Xu, Mengtong13; Luo, Jianjun13; Liu, Jingjia5; Zheng, Jianjun5; Zhang, Wei6,14; Zhang, Kang15; Zhang, Hongjia4; Wang, Shu3; Chen, Runsheng2,16; Zhao, Yi1,2
2025-10-13
发表期刊NATURE COMMUNICATIONS
卷号16期号:1页码:20
摘要Large language models can lighten the workload of clinicians and patients, yet their responses often include fabricated evidence, outdated knowledge, and insufficient medical specificity. We introduce a general retrieval-augmented question-answering framework that continuously gathers up-to-date, high-quality medical knowledge and generates evidence-traceable responses. Here we show that this approach significantly improves the evidence validity, medical expertise, and timeliness of large language model outputs, thereby enhancing their overall quality and credibility. Evaluation against 15,530 objective questions, together with two physician-curated clinical test sets covering evidence-based medical practice and medical order explanation, confirms the improvements. In blinded trials, resident physicians indicate meaningful assistance in 87.00% of evidence-based medical scenarios, and lay users find it helpful in 90.09% of medical order explanations. These findings demonstrate a practical route to trustworthy, general-purpose language assistants for clinical applications.
DOI10.1038/s41467-025-64142-2
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China (National Science Foundation of China)[2022YFF1203303] ; National Key R&D Program of China[92474204] ; National Key R&D Program of China[32341019] ; National Key R&D Program of China[32070670] ; National Natural Science Foundation of China[2023030615] ; National Natural Science Foundation of China[2024020919] ; Ningbo Top Medical and Health Research Program ; Beijing Natural Science Foundation[2035] ; Beijing Natural Science Foundation[2023Z226] ; Beijing Natural Science Foundation[2024Z229] ; Ningbo Science and Technology Innovation Yongjiang ; Major Project of Guangzhou National Laboratory[KF2422-93] ; State Key Laboratory of Systems Medicine for Cancer
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:001593286500034
出版者NATURE PORTFOLIO
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41619
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Hongjia; Wang, Shu; Chen, Runsheng; Zhao, Yi
作者单位1.Chinese Acad Sci, Res Ctr Ubiquitous Comp Syst, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Peking Univ, Breast Ctr, Peoples Hosp, Beijing, Peoples R China
4.Capital Med Univ, Beijing Anzhen Hosp, Beijing, Peoples R China
5.Ningbo 2 Hosp, 41 Xibei Str, Ningbo, Peoples R China
6.Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu, Sichuan, Peoples R China
7.Sichuan Univ, West China Hosp, Dept Nephrol, Chengdu, Sichuan, Peoples R China
8.Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
9.Fudan Univ, MOE Key Lab Computat Neurosci & Brain Inspired, Shanghai, Peoples R China
10.Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
11.Peking Union Med Coll Hosp, Ctr Gynecol Oncol, Beijing, Peoples R China
12.Henan Inst Adv Technol, Zhengzhou, Henan, Peoples R China
13.Chinese Acad Sci, Inst Biophys, Key Lab Epigenet Regulat & Intervent, Beijing, Peoples R China
14.Sichuan Univ, West China Hosp, Mental Hlth Ctr, Chengdu, Sichuan, Peoples R China
15.Macau Univ Sci & Technol, Fac Med, Macau, Peoples R China
16.Chinese Acad Sci, Inst Biophys, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Sheng,Zhao, Fangyuan,Bu, Dechao,et al. LINS: A general medical Q&A framework for enhancing the quality and credibility of LLM-generated responses[J]. NATURE COMMUNICATIONS,2025,16(1):20.
APA Wang, Sheng.,Zhao, Fangyuan.,Bu, Dechao.,Lu, Yunwei.,Gong, Ming.,...&Zhao, Yi.(2025).LINS: A general medical Q&A framework for enhancing the quality and credibility of LLM-generated responses.NATURE COMMUNICATIONS,16(1),20.
MLA Wang, Sheng,et al."LINS: A general medical Q&A framework for enhancing the quality and credibility of LLM-generated responses".NATURE COMMUNICATIONS 16.1(2025):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Sheng]的文章
[Zhao, Fangyuan]的文章
[Bu, Dechao]的文章
百度学术
百度学术中相似的文章
[Wang, Sheng]的文章
[Zhao, Fangyuan]的文章
[Bu, Dechao]的文章
必应学术
必应学术中相似的文章
[Wang, Sheng]的文章
[Zhao, Fangyuan]的文章
[Bu, Dechao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。