CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
GenCNN: A Partition-Aware Multi-Objective Mapping Framework for CNN Accelerators Based on Genetic Algorithm
Mu, Yudong1,2; Fan, Zhihua1,2; Li, Wenming1,2; Zhang, Zhiyuan1,2; An, Xuejun1; Fan, Dongrui1,2; Ye, Xiaochun1,2
2025-09-01
发表期刊ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION
ISSN1544-3566
卷号22期号:3页码:26
摘要Convolutional Neural Networks (CNNs) require partitioning to efficiently run on CNN accelerators, which offer multiple parallel processing dimensions, such as Processing Element (PE) array topologies and Single Instruction Multiple Data (SIMD) execution. The choice of parallelization strategy directly impacts accelerator performance. However, the vast search space for CNN partitioning and parallelization makes manual optimization costly and complex, especially when addressing both aspects simultaneously. This highlights the need for an automated framework to efficiently map CNNs onto accelerators. Our key insight is that existing approaches suffer from inadequate accelerator performance modeling and a lack of multi-objective optimization strategies that jointly consider task partitioning and convolution parallelization. To address this, we propose GenCNN, a multi-objective genetic algorithm-based mapping framework for CNN accelerators. GenCNN first constructs a fine-grained performance model that captures both off-chip data access and on-chip data processing. It then applies the Non-dominated Sorting Genetic Algorithm II improved by Multi-Objective Bayesian Optimization to derive a Pareto-optimal partitioning and parallelization strategy that balances off-chip latency and PE utilization. Finally, GenCNN optimizes scheduling and routing to minimize data transfers. Experimental results show that GenCNN achieves up to 17.66x speedup in compilation and 6.47x in execution compared with state-of-the-art mapping frameworks.
关键词CNN Accelerator Dataflow Graph Mapping Genetic Algorithm Multi-objective Optimization
DOI10.1145/3747844
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2023YFB4503500] ; Beijing Nova Program[20220484054] ; Beijing Nova Program[20230484420] ; Beijing Natural Science Foundation[L234078] ; SKLP Foundation[CLQD202502]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods
WOS记录号WOS:001606458500004
出版者ASSOC COMPUTING MACHINERY
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41577
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fan, Zhihua; Li, Wenming
作者单位1.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Mu, Yudong,Fan, Zhihua,Li, Wenming,et al. GenCNN: A Partition-Aware Multi-Objective Mapping Framework for CNN Accelerators Based on Genetic Algorithm[J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,2025,22(3):26.
APA Mu, Yudong.,Fan, Zhihua.,Li, Wenming.,Zhang, Zhiyuan.,An, Xuejun.,...&Ye, Xiaochun.(2025).GenCNN: A Partition-Aware Multi-Objective Mapping Framework for CNN Accelerators Based on Genetic Algorithm.ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION,22(3),26.
MLA Mu, Yudong,et al."GenCNN: A Partition-Aware Multi-Objective Mapping Framework for CNN Accelerators Based on Genetic Algorithm".ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 22.3(2025):26.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mu, Yudong]的文章
[Fan, Zhihua]的文章
[Li, Wenming]的文章
百度学术
百度学术中相似的文章
[Mu, Yudong]的文章
[Fan, Zhihua]的文章
[Li, Wenming]的文章
必应学术
必应学术中相似的文章
[Mu, Yudong]的文章
[Fan, Zhihua]的文章
[Li, Wenming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。