CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features
Yang, Chaozhi1; Fan, Jiayue1; Bai, Yun1; Li, Yachuan1; Xiao, Qian1; Li, Zongmin1; Li, Hongyi2; Li, Hua3
2024-12-20
发表期刊KNOWLEDGE-BASED SYSTEMS
ISSN0950-7051
卷号306页码:13
摘要Automatic extraction of retinal structures, including Retinal Capillaries (RC), Retinal Arteries (RA), Retinal Veins (RV), and the Foveal Avascular Zone (FAZ), is crucial for the diagnosis and treatment of ocular diseases. This paper presents ODDF-Net, a segmentation network leveraging optical density and disease features, for the simultaneous 2D segmentation of RC, RA, RV, and FAZ in 3D Optical Coherence Tomography Angiography (OCTA). We introduce the concept of optical density to generate additional input images, enhancing the specificity for distinguishing arteries and veins. Our network employs a decoupled segmentation head to separate independent features of each object from shared features by focusing on object boundaries. Given the impact of ocular diseases on the morphology of retinal objects, we designed an auxiliary classification head and a cross-dimensional feature fusion module to model the relationship between various diseases and changes in retinal structures. Extensive experiments on two subsets of the OCTA-500 dataset demonstrate that ODDF-Net outperforms state-of-the-art methods, achieving mean intersection over union ratios of 88.17% and 82.80%. The source code is available at https://github.com/y8421036/ODDF-Net.
关键词Multi-object segmentation Retina OCTA Optical density 3D to 2D
DOI10.1016/j.knosys.2024.112704
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2019YFF0301800] ; National Natural Science Foundation of China[61379106] ; National Natural Science Foundation of China[61806199] ; General Research Projects of Beijing Educations Committee in China[KM201910005013] ; Shandong Provincial Natural Science Foundation[ZR2015FM011]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001357509600001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41191
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Zongmin
作者单位1.China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
2.Chinese Acad Med Sci, Beijing Hosp, Inst Geriatr Med, Beijing 100730, Peoples R China
3.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yang, Chaozhi,Fan, Jiayue,Bai, Yun,et al. ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features[J]. KNOWLEDGE-BASED SYSTEMS,2024,306:13.
APA Yang, Chaozhi.,Fan, Jiayue.,Bai, Yun.,Li, Yachuan.,Xiao, Qian.,...&Li, Hua.(2024).ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features.KNOWLEDGE-BASED SYSTEMS,306,13.
MLA Yang, Chaozhi,et al."ODDF-Net: Multi-object segmentation in 3D retinal OCTA using optical density and disease features".KNOWLEDGE-BASED SYSTEMS 306(2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Chaozhi]的文章
[Fan, Jiayue]的文章
[Bai, Yun]的文章
百度学术
百度学术中相似的文章
[Yang, Chaozhi]的文章
[Fan, Jiayue]的文章
[Bai, Yun]的文章
必应学术
必应学术中相似的文章
[Yang, Chaozhi]的文章
[Fan, Jiayue]的文章
[Bai, Yun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。