CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation
Wu, Fan1; Luo, Haiyong2; Zhao, Fang1; Wei, Liangrui1; Zhou, Bo3
2024
发表期刊IEEE SIGNAL PROCESSING LETTERS
ISSN1070-9908
卷号31页码:3104-3108
摘要This letter addresses challenges stemming from sensor manufacturing processes and technological constraints, such as nonlinear stochastic noise, leading to rapid INS positioning error divergence. To enhance the performance of GNSS/INS (Global Navigation Satellite System/Integrated Navigation Systems) integrated navigation methods, we propose an AI-based adaptive error compensation method. We introduce deep learning to correct INS computational errors, leveraging its precision modeling without strict noise assumptions. Our approach integrates filtering methods and deep learning approaches, avoiding the uncontrollable introduction of positioning errors inherent in end-to-end models' black-box mode. We design a novel deep model structure to improve generalization while reducing parameters and computational complexity. Validation is conducted using a vehicular navigation data acquisition platform, simulating scenarios of GNSS signal loss. Experimental results demonstrate a 77.70% improvement in recognition rates across different road segments compared to traditional methods based on Extended Kalman Filter, indicating significant practical value.
关键词Global navigation satellite systems inertial navigation system probSparse self-attention probSparse self-attention urban canyon urban canyon urban canyon
DOI10.1109/LSP.2024.3484292
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of Chinese Academy of Sciences[XDA28040500] ; National Natural Science Foundation of China[62261042] ; Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation ; Fengtai Rail Transit Frontier Research Joint Fund[L221003] ; Beijing Natural Science Foundation[4232035] ; Beijing Natural Science Foundation[4222034] ; BUPT Excellent Ph.D. Students Foundation[CX2022131]
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001358187900003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41189
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Haiyong
作者单位1.Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Res Ctr Ubiquitous Comp Syst, Beijing 100190, Peoples R China
3.Yibin Tinno Commun Co Ltd, Sci & Innovat Ctr, Guoxing Ave,Lingang Econ Dev Zone, Yibin 644000, Sichuan, Peoples R China
推荐引用方式
GB/T 7714
Wu, Fan,Luo, Haiyong,Zhao, Fang,et al. Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation[J]. IEEE SIGNAL PROCESSING LETTERS,2024,31:3104-3108.
APA Wu, Fan,Luo, Haiyong,Zhao, Fang,Wei, Liangrui,&Zhou, Bo.(2024).Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation.IEEE SIGNAL PROCESSING LETTERS,31,3104-3108.
MLA Wu, Fan,et al."Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation".IEEE SIGNAL PROCESSING LETTERS 31(2024):3104-3108.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Fan]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
百度学术
百度学术中相似的文章
[Wu, Fan]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
必应学术
必应学术中相似的文章
[Wu, Fan]的文章
[Luo, Haiyong]的文章
[Zhao, Fang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。