Institute of Computing Technology, Chinese Academy IR
Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation | |
Wu, Fan1; Luo, Haiyong2; Zhao, Fang1; Wei, Liangrui1; Zhou, Bo3 | |
2024 | |
发表期刊 | IEEE SIGNAL PROCESSING LETTERS
![]() |
ISSN | 1070-9908 |
卷号 | 31页码:3104-3108 |
摘要 | This letter addresses challenges stemming from sensor manufacturing processes and technological constraints, such as nonlinear stochastic noise, leading to rapid INS positioning error divergence. To enhance the performance of GNSS/INS (Global Navigation Satellite System/Integrated Navigation Systems) integrated navigation methods, we propose an AI-based adaptive error compensation method. We introduce deep learning to correct INS computational errors, leveraging its precision modeling without strict noise assumptions. Our approach integrates filtering methods and deep learning approaches, avoiding the uncontrollable introduction of positioning errors inherent in end-to-end models' black-box mode. We design a novel deep model structure to improve generalization while reducing parameters and computational complexity. Validation is conducted using a vehicular navigation data acquisition platform, simulating scenarios of GNSS signal loss. Experimental results demonstrate a 77.70% improvement in recognition rates across different road segments compared to traditional methods based on Extended Kalman Filter, indicating significant practical value. |
关键词 | Global navigation satellite systems inertial navigation system probSparse self-attention probSparse self-attention urban canyon urban canyon urban canyon |
DOI | 10.1109/LSP.2024.3484292 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of Chinese Academy of Sciences[XDA28040500] ; National Natural Science Foundation of China[62261042] ; Key Research Projects of the Joint Research Fund for Beijing Natural Science Foundation ; Fengtai Rail Transit Frontier Research Joint Fund[L221003] ; Beijing Natural Science Foundation[4232035] ; Beijing Natural Science Foundation[4222034] ; BUPT Excellent Ph.D. Students Foundation[CX2022131] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Electrical & Electronic |
WOS记录号 | WOS:001358187900003 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41189 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Luo, Haiyong |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, Res Ctr Ubiquitous Comp Syst, Beijing 100190, Peoples R China 3.Yibin Tinno Commun Co Ltd, Sci & Innovat Ctr, Guoxing Ave,Lingang Econ Dev Zone, Yibin 644000, Sichuan, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Fan,Luo, Haiyong,Zhao, Fang,et al. Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation[J]. IEEE SIGNAL PROCESSING LETTERS,2024,31:3104-3108. |
APA | Wu, Fan,Luo, Haiyong,Zhao, Fang,Wei, Liangrui,&Zhou, Bo.(2024).Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation.IEEE SIGNAL PROCESSING LETTERS,31,3104-3108. |
MLA | Wu, Fan,et al."Optimizing GNSS/INS Integrated Navigation: A Deep Learning Approach for Error Compensation".IEEE SIGNAL PROCESSING LETTERS 31(2024):3104-3108. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论