CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Boost Tracking by Natural Language With Prompt-Guided Grounding
Li, Hengyou1; Liu, Xinyan1; Li, Guorong1; Wang, Shuhui2; Qing, Laiyun1; Huang, Qingming1
2024-11-18
发表期刊IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
ISSN1524-9050
页码13
摘要TNL (Tracking by Natural Language) aims to locate the target described by a natural language sentence in a video. Most existing TNL methods are typically composed of three modules: object grounding, object tracking, and switching module, and their performance is limited by the poor performance of the grounding and switching modules due to the complex backgrounds and inaccurate information stored in the memory. This paper presents a global-local framework to address these issues, which includes a prompt-guided grounding module, a trained local tracking module, and a memory-based switcher module. The prompt-guided grounding module uses noun prompts to guide the CLIP model in focusing more on target regions and aligning visual features semantically with linguistic features, avoiding being misled by distractors and background. The memory-based switch module stores historical information with higher-quality memory, allowing the model to make more accurate decisions based on reliable data, thus improving the overall performance. Experiments on TNL2K, LaSOT, and OTB-Lang demonstrate the effectiveness and generalizability of the proposed framework.
关键词Target tracking Grounding Switches Visualization Feature extraction Computational modeling Adaptation models Location awareness Linguistics Memory management Vision-language tracking prompt learning inverse tracking
DOI10.1109/TITS.2024.3492263
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62272438] ; National Natural Science Foundation of China[62236008] ; National Natural Science Foundation of China[U21B2038] ; National Natural Science Foundation of China[61836002] ; Key Deployment Program of the Chinese Academy of Sciences[KGFZD-145-23-18] ; Fundamental Research Funds for Central Universities, China[E2ET1104] ; Fundamental Research Funds for Central Universities, China[E2E41102X2]
WOS研究方向Engineering ; Transportation
WOS类目Engineering, Civil ; Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号WOS:001362261200001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41173
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Guorong
作者单位1.Univ Chinese Acad Sci, Sch Comp Sci & Technol, Key Lab Big Data Min & Knowledge Management, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100045, Peoples R China
推荐引用方式
GB/T 7714
Li, Hengyou,Liu, Xinyan,Li, Guorong,et al. Boost Tracking by Natural Language With Prompt-Guided Grounding[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,2024:13.
APA Li, Hengyou,Liu, Xinyan,Li, Guorong,Wang, Shuhui,Qing, Laiyun,&Huang, Qingming.(2024).Boost Tracking by Natural Language With Prompt-Guided Grounding.IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS,13.
MLA Li, Hengyou,et al."Boost Tracking by Natural Language With Prompt-Guided Grounding".IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS (2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Hengyou]的文章
[Liu, Xinyan]的文章
[Li, Guorong]的文章
百度学术
百度学术中相似的文章
[Li, Hengyou]的文章
[Liu, Xinyan]的文章
[Li, Guorong]的文章
必应学术
必应学术中相似的文章
[Li, Hengyou]的文章
[Liu, Xinyan]的文章
[Li, Guorong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。