CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Enhancing Recommendation with Denoising Auxiliary Task
Liu, Peng-Sheng1; Zheng, Li-Nan2,3; Chen, Jia-Le2,3; Zhang, Guang-Fa2,3; Xu, Yang1; Fang, Jin-Yun2
2024-09-01
发表期刊JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
ISSN1000-9000
卷号39期号:5页码:1123-1137
摘要The historical interaction sequences of users play a crucial role in training recommender systems that can accurately predict user preferences. However, due to the arbitrariness of user behaviors, the presence of noise in these sequences poses a challenge to predicting their next actions in recommender systems. To address this issue, our motivation is based on the observation that training noisy sequences and clean sequences (sequences without noise) with equal weights can impact the performance of the model. We propose the novel self-supervised Auxiliary Task Joint Training (ATJT) method aimed at more accurately reweighting noisy sequences in recommender systems. Specifically, we strategically select subsets from users' original sequences and perform random replacements to generate artificially replaced noisy sequences. Subsequently, we perform joint training on these artificially replaced noisy sequences and the original sequences. Through effective reweighting, we incorporate the training results of the noise recognition model into the recommender model. We evaluate our method on three datasets using a consistent base model. Experimental results demonstrate the effectiveness of introducing the self-supervised auxiliary task to enhance the base model's performance.
关键词auxiliary task learning recommender system sequence denoising
DOI10.1007/s11390-024-4069-5
收录类别SCI
语种英语
资助项目Program for Student Innovation Through Research and Training of Guizhou University[2023SRT071]
WOS研究方向Computer Science
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Software Engineering
WOS记录号WOS:001372618500004
出版者SPRINGER SINGAPORE PTE LTD
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41123
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fang, Jin-Yun
作者单位1.Guizhou Univ, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Liu, Peng-Sheng,Zheng, Li-Nan,Chen, Jia-Le,et al. Enhancing Recommendation with Denoising Auxiliary Task[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2024,39(5):1123-1137.
APA Liu, Peng-Sheng,Zheng, Li-Nan,Chen, Jia-Le,Zhang, Guang-Fa,Xu, Yang,&Fang, Jin-Yun.(2024).Enhancing Recommendation with Denoising Auxiliary Task.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,39(5),1123-1137.
MLA Liu, Peng-Sheng,et al."Enhancing Recommendation with Denoising Auxiliary Task".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 39.5(2024):1123-1137.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Peng-Sheng]的文章
[Zheng, Li-Nan]的文章
[Chen, Jia-Le]的文章
百度学术
百度学术中相似的文章
[Liu, Peng-Sheng]的文章
[Zheng, Li-Nan]的文章
[Chen, Jia-Le]的文章
必应学术
必应学术中相似的文章
[Liu, Peng-Sheng]的文章
[Zheng, Li-Nan]的文章
[Chen, Jia-Le]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。