Institute of Computing Technology, Chinese Academy IR
APoX-M: Accelerate deep point cloud analysis via adaptive graph construction | |
Dai, Lei1,2; Liang, Shengwen1,2,3; Wang, Ying2,3,4,5; Li, Huawei1,2; Li, Xiaowei1,2,3 | |
2025-03-01 | |
发表期刊 | INTEGRATION-THE VLSI JOURNAL
![]() |
ISSN | 0167-9260 |
卷号 | 101页码:10 |
摘要 | Graph-based deep learning point cloud processing has gained increasing popularity but its performance is dragged by the dominating graph construction (GC) phase with irregular computation and memory access. Existing works that accelerate GC by tailoring architecture fora single GC algorithm fail to maintain efficiency because they neglect the best GC algorithm variation incurred by the point-cloud density variation in changing scenarios. Therefore, we propose APoX-M, a unified architecture with an adaptive GC scheme that can identify the optimum GC approach according to the point cloud variation. We also provide better memory management and scheduling optimizations for better performance. Experiments indicate that APoX-M achieves higher performance and energy efficiency over existing accelerators. |
关键词 | K nearest neighbor Approximate nearest neighbor Point cloud Graph construction |
DOI | 10.1016/j.vlsi.2024.102313 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2018AAA0102705] ; National Natural Science Foundation of China (NSFC) , China[62202453] ; National Natural Science Foundation of China (NSFC) , China[62090024] ; National Natural Science Foundation of China (NSFC) , China[61876173] ; China Postdoctoral Science Foundation[2022M713207] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:001382288400001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.204/handle/2XEOYT63/41071 |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Liang, Shengwen |
作者单位 | 1.Chinese Acad Sci, Inst Comp Technol, SKLP, 6 Zhongguancun South St, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, 80 Zhongguancun East Rd, Beijing 100190, Peoples R China 3.Zhongguancun Natl Lab, Beijing 100190, Peoples R China 4.Chinese Acad Sci, Inst Comp Technol, CICS, 6 Zhongguancun South St, Beijing 100190, Peoples R China 5.Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China |
推荐引用方式 GB/T 7714 | Dai, Lei,Liang, Shengwen,Wang, Ying,et al. APoX-M: Accelerate deep point cloud analysis via adaptive graph construction[J]. INTEGRATION-THE VLSI JOURNAL,2025,101:10. |
APA | Dai, Lei,Liang, Shengwen,Wang, Ying,Li, Huawei,&Li, Xiaowei.(2025).APoX-M: Accelerate deep point cloud analysis via adaptive graph construction.INTEGRATION-THE VLSI JOURNAL,101,10. |
MLA | Dai, Lei,et al."APoX-M: Accelerate deep point cloud analysis via adaptive graph construction".INTEGRATION-THE VLSI JOURNAL 101(2025):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论