CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
APoX-M: Accelerate deep point cloud analysis via adaptive graph construction
Dai, Lei1,2; Liang, Shengwen1,2,3; Wang, Ying2,3,4,5; Li, Huawei1,2; Li, Xiaowei1,2,3
2025-03-01
发表期刊INTEGRATION-THE VLSI JOURNAL
ISSN0167-9260
卷号101页码:10
摘要Graph-based deep learning point cloud processing has gained increasing popularity but its performance is dragged by the dominating graph construction (GC) phase with irregular computation and memory access. Existing works that accelerate GC by tailoring architecture fora single GC algorithm fail to maintain efficiency because they neglect the best GC algorithm variation incurred by the point-cloud density variation in changing scenarios. Therefore, we propose APoX-M, a unified architecture with an adaptive GC scheme that can identify the optimum GC approach according to the point cloud variation. We also provide better memory management and scheduling optimizations for better performance. Experiments indicate that APoX-M achieves higher performance and energy efficiency over existing accelerators.
关键词K nearest neighbor Approximate nearest neighbor Point cloud Graph construction
DOI10.1016/j.vlsi.2024.102313
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2018AAA0102705] ; National Natural Science Foundation of China (NSFC) , China[62202453] ; National Natural Science Foundation of China (NSFC) , China[62090024] ; National Natural Science Foundation of China (NSFC) , China[61876173] ; China Postdoctoral Science Foundation[2022M713207]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:001382288400001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41071
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Liang, Shengwen
作者单位1.Chinese Acad Sci, Inst Comp Technol, SKLP, 6 Zhongguancun South St, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, 80 Zhongguancun East Rd, Beijing 100190, Peoples R China
3.Zhongguancun Natl Lab, Beijing 100190, Peoples R China
4.Chinese Acad Sci, Inst Comp Technol, CICS, 6 Zhongguancun South St, Beijing 100190, Peoples R China
5.Zhejiang Lab, Hangzhou, Zhejiang, Peoples R China
推荐引用方式
GB/T 7714
Dai, Lei,Liang, Shengwen,Wang, Ying,et al. APoX-M: Accelerate deep point cloud analysis via adaptive graph construction[J]. INTEGRATION-THE VLSI JOURNAL,2025,101:10.
APA Dai, Lei,Liang, Shengwen,Wang, Ying,Li, Huawei,&Li, Xiaowei.(2025).APoX-M: Accelerate deep point cloud analysis via adaptive graph construction.INTEGRATION-THE VLSI JOURNAL,101,10.
MLA Dai, Lei,et al."APoX-M: Accelerate deep point cloud analysis via adaptive graph construction".INTEGRATION-THE VLSI JOURNAL 101(2025):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dai, Lei]的文章
[Liang, Shengwen]的文章
[Wang, Ying]的文章
百度学术
百度学术中相似的文章
[Dai, Lei]的文章
[Liang, Shengwen]的文章
[Wang, Ying]的文章
必应学术
必应学术中相似的文章
[Dai, Lei]的文章
[Liang, Shengwen]的文章
[Wang, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。