CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Efficient and Fast High-Performance Library Generation for Deep Learning Accelerators
Bi, Jun1; Wen, Yuanbo1; Li, Xiaqing1; Zhao, Yongwei1; Guo, Yuxuan1,3,4; Zhou, Enshuai1,3,4; Hu, Xing1,2; Du, Zidong1,2; Li, Ling5; Chen, Huaping3; Chen, Tianshi4; Guo, Qi1
2025
发表期刊IEEE TRANSACTIONS ON COMPUTERS
ISSN0018-9340
卷号74期号:1页码:155-169
摘要The widespread adoption of deep learning accelerators (DLAs) underscores their pivotal role in improving the performance and energy efficiency of neural networks. To fully leverage the capabilities of these accelerators, exploration-based library generation approaches have been widely used to substantially reduce software development overhead. However, these approaches have been challenged by issues related to sub-optimal optimization results and excessive optimization overheads. In this paper, we propose Heron to generate high-performance libraries of DLAs in an efficient and fast way. The key is automatically enforcing massive constraints through the entire program generation process and guiding the exploration with an accurate pre-trained cost model. Heron represents the search space as a constrained satisfaction problem (CSP) and explores the space via evolving the CSPs. Thus, the sophisticated constraints of the search space are strictly preserved during the entire exploration process. The exploration algorithm has the flexibility to engage in space exploration using either online-trained models or pre-trained models. Experimental results demonstrate that Heron averagely achieves 2.71$\times$x speedup over three state-of-the-art automatic generation approaches. Also, compared to vendor-provided hand-tuned libraries, Heron achieves a 2.00$\times$x speedup on average. When employing a pre-trained model, Heron achieves 11.6$\times$x compilation time speedup, incurring a minor impact on execution time.
关键词Optimization Space exploration Schedules Libraries Biological cells Deep learning Costs Computers Search problems Tensors Code generation compiler optimization tensor computation
DOI10.1109/TC.2024.3475575
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2021ZD0110102] ; NSF of China[U22A2028] ; NSF of China[62302483] ; NSF of China[62372436] ; NSF of China[62102398] ; NSF of China[62222214] ; CAS Project for Young Scientists in Basic Research[YSBR-029] ; Youth Innovation Promotion Association CAS
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号WOS:001377244200018
出版者IEEE COMPUTER SOC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41069
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Wen, Yuanbo
作者单位1.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100864, Peoples R China
2.Shanghai Innovat Ctr Processor Technol SH, Shanghai 200000, Peoples R China
3.Univ Sci & Technol China, Hefei 230052, Anhui, Peoples R China
4.Cambricon Technol, Beijing 100191, Peoples R China
5.Chinese Acad Sci, Inst Software, Intelligent Software Res Ctr, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Bi, Jun,Wen, Yuanbo,Li, Xiaqing,et al. Efficient and Fast High-Performance Library Generation for Deep Learning Accelerators[J]. IEEE TRANSACTIONS ON COMPUTERS,2025,74(1):155-169.
APA Bi, Jun.,Wen, Yuanbo.,Li, Xiaqing.,Zhao, Yongwei.,Guo, Yuxuan.,...&Guo, Qi.(2025).Efficient and Fast High-Performance Library Generation for Deep Learning Accelerators.IEEE TRANSACTIONS ON COMPUTERS,74(1),155-169.
MLA Bi, Jun,et al."Efficient and Fast High-Performance Library Generation for Deep Learning Accelerators".IEEE TRANSACTIONS ON COMPUTERS 74.1(2025):155-169.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bi, Jun]的文章
[Wen, Yuanbo]的文章
[Li, Xiaqing]的文章
百度学术
百度学术中相似的文章
[Bi, Jun]的文章
[Wen, Yuanbo]的文章
[Li, Xiaqing]的文章
必应学术
必应学术中相似的文章
[Bi, Jun]的文章
[Wen, Yuanbo]的文章
[Li, Xiaqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。