CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Edge-centric optimization: a novel strategy for minimizing information loss in graph-to-text generation
Yao, Zheng2; Li, Jingyuan1; Cen, Jianhe2; Sun, Shiqi2; Yin, Dahu2; Wang, Yuanzhuo3
2025
发表期刊COMPLEX & INTELLIGENT SYSTEMS
ISSN2199-4536
卷号11期号:1页码:19
摘要Given the remarkable text generation capabilities of pre-trained language models, impressive results have been realized in graph-to-text generation. However, while learning from knowledge graphs, these language models are unable to fully grasp the structural information of the graph, leading to logical errors and missing key information. Therefore, an important research direction is to minimize the loss of graph structural information during the model training process. We propose a framework named Edge-Optimized Multi-Level Information refinement (EMLR), which aims to maximize the retention of the graph's structural information from an edge perspective. Based on this framework, we further propose a new graph generation model, named TriELMR, highlighting the comprehensive interactive learning relationship between the model and the graph structure, as well as the importance of edges in the graph structure. TriELMR adopts three main strategies to reduce information loss during learning: (1) Knowledge Sequence Optimization; (2) EMLR Framework; and (3) Graph Activation Function. Experimental results reveal that TriELMR exhibits exceptional performance across various benchmark tests, especially on the webnlgv2.0 and Event Narrative datasets, achieving BLEU-4 scores of 66.5% and 37.27%, respectively, surpassing the state-of-the-art models. These demonstrate the advantages of TriELMR in maintaining the accuracy of graph structural information.
关键词Graph-generated text Knowledge representation Knowledge graphs Graph theory Edge-aware attention
DOI10.1007/s40747-024-01690-y
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[62172393] ; Henan Province Key Research and Development Project[241111211900] ; Zhongyuanyingcai program[204200510002] ; Ministry of Education Industry Education Collaborative Education Project by Tencent[230700006203144]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001380505300001
出版者SPRINGER HEIDELBERG
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41067
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Jingyuan; Wang, Yuanzhuo
作者单位1.Beijing Technol & Business Univ, Sch Comp & Artificial Intelligence, Beijing 100048, Peoples R China
2.Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450001, Henan, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yao, Zheng,Li, Jingyuan,Cen, Jianhe,et al. Edge-centric optimization: a novel strategy for minimizing information loss in graph-to-text generation[J]. COMPLEX & INTELLIGENT SYSTEMS,2025,11(1):19.
APA Yao, Zheng,Li, Jingyuan,Cen, Jianhe,Sun, Shiqi,Yin, Dahu,&Wang, Yuanzhuo.(2025).Edge-centric optimization: a novel strategy for minimizing information loss in graph-to-text generation.COMPLEX & INTELLIGENT SYSTEMS,11(1),19.
MLA Yao, Zheng,et al."Edge-centric optimization: a novel strategy for minimizing information loss in graph-to-text generation".COMPLEX & INTELLIGENT SYSTEMS 11.1(2025):19.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yao, Zheng]的文章
[Li, Jingyuan]的文章
[Cen, Jianhe]的文章
百度学术
百度学术中相似的文章
[Yao, Zheng]的文章
[Li, Jingyuan]的文章
[Cen, Jianhe]的文章
必应学术
必应学术中相似的文章
[Yao, Zheng]的文章
[Li, Jingyuan]的文章
[Cen, Jianhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。