CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study
Pitakbut, Thanet1,3,4; Munkert, Jennifer1,2; Xi, Wenhui3,4; Wei, Yanjie3,4; Fuhrmann, Gregor1,2
2024-12-20
发表期刊BMC CHEMISTRY
卷号18期号:1页码:16
摘要In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model. First, in vitro beta-lactamase inhibitory screening was performed using an in-house chemical library. The in vitro results were later used as a validation. Consequently, we optimized docking protocols for AutoDock Vina and DOCK6 programs. With an appropriate scoring function, we found that DOCK6 could identify up to 70% of all active molecules, double the inappropriate. Further consensus analysis reduced the success rate to 50%. Simultaneously, a false positive rate was down to 16%, which was experimentally favorable for a drug search. Finally, we trained two quantitative structure-activity relationship (QSAR) models using logistic regression as a reference model and a random forest as a test model. After combining consensus docking results, random forest-based QSAR outperformed a logistic regression by restoring the success rate to 70% and maintaining a low false positive rate of around 21%. In conclusion, this study demonstrated the benefit of using a random forest (machine learning)-based QSAR model to overcome a standard consensus docking limitation in beta-lactamase inhibitor search as a proof-of-concept.
关键词Molecular docking Consensus docking Random forest-based QSAR model Beta-lactamase inhibitory screening
DOI10.1186/s13065-024-01324-x
收录类别SCI
语种英语
资助项目Friedrich-Alexander-Universitt Erlangen-Nrnberg (1041)
WOS研究方向Chemistry
WOS类目Chemistry, Multidisciplinary
WOS记录号WOS:001380721400001
出版者BMC
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/41061
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Fuhrmann, Gregor
作者单位1.Friedrich Alexander Univ Erlangen Nurnberg, Dept Biol, Pharmaceut Biol, Staudtstr 5, D-91058 Erlangen, Germany
2.FAU NeW Res Ctr New Bioact Cpds, Nikolaus Fiebiger Str 10, D-91058 Erlangen, Germany
3.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Intelligent Bioinformat, Shenzhen 518055, Peoples R China
4.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Pitakbut, Thanet,Munkert, Jennifer,Xi, Wenhui,et al. Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study[J]. BMC CHEMISTRY,2024,18(1):16.
APA Pitakbut, Thanet,Munkert, Jennifer,Xi, Wenhui,Wei, Yanjie,&Fuhrmann, Gregor.(2024).Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study.BMC CHEMISTRY,18(1),16.
MLA Pitakbut, Thanet,et al."Utilizing machine learning-based QSAR model to overcome standalone consensus docking limitation in beta-lactamase inhibitors screening: a proof-of-concept study".BMC CHEMISTRY 18.1(2024):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pitakbut, Thanet]的文章
[Munkert, Jennifer]的文章
[Xi, Wenhui]的文章
百度学术
百度学术中相似的文章
[Pitakbut, Thanet]的文章
[Munkert, Jennifer]的文章
[Xi, Wenhui]的文章
必应学术
必应学术中相似的文章
[Pitakbut, Thanet]的文章
[Munkert, Jennifer]的文章
[Xi, Wenhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。