CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Tool learning with large language models: a survey
Qu, Changle1; Dai, Sunhao1; Wei, Xiaochi2; Cai, Hengyi3; Wang, Shuaiqiang2; Yin, Dawei2; Xu, Jun1; Wen, Ji-rong1
2025-08-01
发表期刊FRONTIERS OF COMPUTER SCIENCE
ISSN2095-2228
卷号19期号:8页码:21
摘要Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the "why" by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of "how", we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area.
关键词tool learning large language models agent
DOI10.1007/s11704-024-40678-2
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2023YFA1008704] ; National Natural Science Foundation of China[62377044] ; Beijing Key Laboratory of Big Data Management and Analysis Methods, Major Innovation Planning Interdisciplinary Platform for the Double-First Class Initiative, funds for building world-class universities (disciplines) of Renmin University of China
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001397127900010
出版者HIGHER EDUCATION PRESS
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40793
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Xu, Jun
作者单位1.Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing 100872, Peoples R China
2.Baidu Inc, Beijing 100193, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Qu, Changle,Dai, Sunhao,Wei, Xiaochi,et al. Tool learning with large language models: a survey[J]. FRONTIERS OF COMPUTER SCIENCE,2025,19(8):21.
APA Qu, Changle.,Dai, Sunhao.,Wei, Xiaochi.,Cai, Hengyi.,Wang, Shuaiqiang.,...&Wen, Ji-rong.(2025).Tool learning with large language models: a survey.FRONTIERS OF COMPUTER SCIENCE,19(8),21.
MLA Qu, Changle,et al."Tool learning with large language models: a survey".FRONTIERS OF COMPUTER SCIENCE 19.8(2025):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qu, Changle]的文章
[Dai, Sunhao]的文章
[Wei, Xiaochi]的文章
百度学术
百度学术中相似的文章
[Qu, Changle]的文章
[Dai, Sunhao]的文章
[Wei, Xiaochi]的文章
必应学术
必应学术中相似的文章
[Qu, Changle]的文章
[Dai, Sunhao]的文章
[Wei, Xiaochi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。