CSpace  > 中国科学院计算技术研究所期刊论文  > 英文
Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA
Ye, Haili1,2; Mo, Yancheng1,2; Tang, Chen3,4; Liao, Mingqian1,2; Zhang, Xiaoqing1,2,5,6; Dai, Limeng7; Li, Baihua8; Liu, Jiang1,2,3,4
2025-04-01
发表期刊DISPLAYS
ISSN0141-9382
卷号87页码:12
摘要Intracranial aneurysm (IA) lesion segmentation is significant for its treatment and prognosis. Although exiting deep network-based instance methods have good IA lesion segmentation results based on digital subtraction angiography (DSA) images, they still face great challenges with instance confidence bias and imprecise boundary segmentation, which may negatively affect IA diagnosis. To tackle these problems, this paper proposes a novel graph confidence intercalibration network (GCINet) to automatically segment IA lesions from DSA images. To be specific, we design a graph confidence intercalibration (GCI) module to mitigate instance confidence bias by dynamically adjusting their confidence distributions. At the same time, we propose an edge space perception (ESP) module to correct ambiguous segmentation boundaries. Extensive experiments on a clinical IA-DSA and a publicly available LiTS dataset demonstrate that our GCINet outperforms state-of-the-art methods. Additionally, visual analysis and ablation studies are provided to verify the effectiveness of each module in GCINet.
关键词Intracranial aneurysm Instance segmentation Graph confidence intercalibration Edge space perception module DSA image
DOI10.1016/j.displa.2024.102929
收录类别SCI
语种英语
资助项目Leading Goose Program of Zhejiang[2023C03079] ; General Program of National Natural Science Foundation of China[82272086]
WOS研究方向Computer Science ; Engineering ; Instruments & Instrumentation ; Optics
WOS类目Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic ; Instruments & Instrumentation ; Optics
WOS记录号WOS:001390999400001
出版者ELSEVIER
引用统计
文献类型期刊论文
条目标识符http://119.78.100.204/handle/2XEOYT63/40777
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhang, Xiaoqing; Liu, Jiang
作者单位1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
3.Wenzhou Med Univ, Sch Ophthalmol & Optometry, Wenzhou 325027, Peoples R China
4.Wenzhou Med Univ, Eye Hosp, Wenzhou 325027, Peoples R China
5.Chinese Acad Sci, Shenzhen Inst Adv Technol, Ctr High Performance Comp, Shenzhen 518055, Peoples R China
6.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Intelligent Bioinformat, Shenzhen 518055, Peoples R China
7.Shenzhen Peoples Hosp, Neurosurg Dept, Shenzhen 518020, Peoples R China
8.Loughborough Univ, Dept Comp Sci, Loughborough LE11 3TU, England
推荐引用方式
GB/T 7714
Ye, Haili,Mo, Yancheng,Tang, Chen,et al. Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA[J]. DISPLAYS,2025,87:12.
APA Ye, Haili.,Mo, Yancheng.,Tang, Chen.,Liao, Mingqian.,Zhang, Xiaoqing.,...&Liu, Jiang.(2025).Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA.DISPLAYS,87,12.
MLA Ye, Haili,et al."Graph confidence intercalibration network for intracranial aneurysm lesion instance segmentation in DSA".DISPLAYS 87(2025):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ye, Haili]的文章
[Mo, Yancheng]的文章
[Tang, Chen]的文章
百度学术
百度学术中相似的文章
[Ye, Haili]的文章
[Mo, Yancheng]的文章
[Tang, Chen]的文章
必应学术
必应学术中相似的文章
[Ye, Haili]的文章
[Mo, Yancheng]的文章
[Tang, Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。